中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 134-143 DOI: 10.7536/PC180447 Previous Articles   Next Articles

• Review •

Selective Oil/Water Separation Materials

Jun Zhang, Lei Han, Yuan Zeng, Liang Tian, Haijun Zhang**()   

  1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received: Revised: Online: Published:
  • Contact: Haijun Zhang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(51672194); The work was supported by the National Natural Science Foundation of China(51872210); The Key Program of Natural Science Foundation of Hubei Province, China(2017CFA004); The Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(T201602)
Richhtml ( 63 ) PDF ( 1072 ) Cited
Export

EndNote

Ris

BibTeX

Water resource is a prerequisite for the survival of human beings with a self-evident importance. In recent years, water environment continues to deteriorate and water pollution is becoming more and more severe, oil spillages and indiscriminate discharge of organic pollutants cause serious and irrecoverable damages to environment and ecosystems, and the way for effective separation of oil-water mixture is becoming an urgent problem. The frequently-used methods for oil/water separation are physical adsorption, chemical dispersion and biodegradation, in which chemical adsorption and biodegradation methods usually cause secondary pollution to the marine environment; and the physical adsorption material has the advantages of easily collection, pollution-free and so on. This article summarizes the research status of physical filtration and physical adsorption materials for oil/water separation, some related difficulties that remain to be solved are pointed out and its future researching focus and developing directions are proposed.

Table 1 Surface energy data of some organic materials
Fig.1 Schematic illustration of contact angle of a liquid drop on a solid surface: (a)Young model, (b) Wenzel model, and (c)Cassie model
Fig.2 SEM image of the raw Cu mesh (ac); SEM image of the oxidized CuO mesh (df); PA modified CuO mesh (gi)[42]
Fig.3 Schematic illustration of the formation of a superhydrophobic/superoleophilic polyvinylidene fluoride membrane via a modified phase inversion process(a), and SEM images of the membrane with different magnification (bd)[51]
Fig.4 SEM images of the sand particles(ac), the wettability of heavy oil (1,2-dichloroethan) droplet and light oil (petroleum ether) droplet on a layer of sand in water medium(d,e)[57]
Fig.5 Schematic illustration of synthesis procedures for superhydrophobic Fe3O4 @PDA@Ag NPs and corresponding TEM images[60]
Fig.6 Photographs of water droplets on the surface of the superhydrophobic melaminesponges before and after low/high temperature exposure for 1 h[69]
Fig.7 Equivalent schematic representation of porous hydrophobic/oleophilic materials on oil-water mixture[71]
Fig.8 SEM image of the cellulose fibers in raw cotton (a), SEM image of twisted carbon fibers aerogel (b), photograph of a water droplet supported on a twisted carbon fibers aerogel (c) and mirror-reflection of a twisted carbon fibers aerogel immersed into water (d)[75]
[1]
Joye S B . Science, 2015,349(6248):592.
[2]
Ivshina I B, Kuyukina M S, Krivoruchko A V, Elkin A A, Makarov S O, Cunningham C J, Peshkur T A, Atlas R M, Philp J C . Environmental Science Processes & Impacts, 2015,17(7):1201.
[3]
Nisticò R, Franzoso F, Cesano F, Scarano D, Magnacca G, Parolo M E, Carlos L . ACS Sustainable Chemistry & Engineering, 2017,5(1):793.
[4]
Li Y, Zhang Z, Wang M, Men X, Xue Q . Journal of Materials Chemistry A, 2017,5(10):5077.
[5]
Ge J, Zhao H Y, Zhu H W, Huang J, Shi L A, Yu S H . Advanced Materials, 2016,28(47):10459.
[6]
Ma Q, Cheng H, Fane A G, Wang R, Zhang H . Small, 2016,12(16):2186.
[7]
Xia B B, Liu H T, Fan Y N, Chen T C, Chen C, Wang B . Materials & Design, 2017,135:51.
[8]
Wang Z, Guo Z . Chemical Communications, 2017,53(4):12990.
[9]
Wang K, Wang Z, Dong Y, Zhang S, Li J . Polymers, 2017,9(8):347.
[10]
Tang X, Shen C, Zhu W, Zhang S, Xu Y, Yang Y, Gao M, Dong F . RSC Advances, 2017,7(48):30495.
[11]
Emelyanenko A M, Boinovich L B, Bezdomnikov A A, Chulkova E V, Emelyanenko K A . ACS Applied Materials & Interfaces, 2017,9(28):24210.
[12]
Chen L, Guo Z, Liu W . Journal of Materials Chemistry A, 2017,5(28):14480.
[13]
詹晓力 ( Zhan X L), 金碧玉 (Jin B Y), 张庆华 (Zhang Q H), 陈丰秋 (Chen F Q) . 化学进展( Progress in Chemistry), 2018,1:87.
[14]
Zhang T, Kong L, Dai Y, Yue X, Rong J, Qiu F, Pan J . Chemical Engineering Journal, 2017,309:7.
[15]
Li H, Yu S, Han X . Chemical Engineering Journal, 2016,283:1443.
[16]
Ebihara Y, Ota R, Noriki T, Shimojo M, Kajikawa K . Scientific Reports, 2015,5:15992.
[17]
Lai C Y, Tang T C, Amadei C A, Marsden A J, Verdaguer A, Wilson N, Chiesa M . Carbon, 2014,80:784.
[18]
Jiang H B, Liu Y Q, Zhang Y L, Liu Y, Fu X Y, Han D D, Song Y Y, Ren L, Sun H B . ACS Applied Materials & Interfaces, 2018,10(21):18416.
[19]
Sanchez-Valencia J R, Dienel T, Groning O, Shorubalko I, Mueller A, Jansen M, Amsharov K, Ruffieux P, Fasel R . Nature, 2014,512(7512):61.
[20]
Yong G K, Lim N, Kim J, Kim C, Lee J, Kwon K H . Applied Surface Science, 2017.
[21]
Razmjou A, Arifin E, Dong G, Mansouri J, Chen V . Journal of Membrane Science, 2012,415/416(10):850.
[22]
Coulson S R, And I S W, Badyal J P S, And S A B, Willis C . Chemistry of Materials, 2000,12(7):2031.
[23]
Yamada Y, Yamada T S, Tasaka A, Inagaki N . Macromolecules, 1996,29(12):4331.
[24]
Cao S, Qiu F, Xiong C, Wang X, Zhang G, Long S, Yang J . Journal of Applied Polymer Science, 2018,135(12):45923.
[25]
Ge J, Zong D, Jin Q, Yu J, Ding B . Advanced Functional Materials, 2018,28(10):1705051.
[26]
Jing P, Zhang S Y, Chen W, Wang L, Shi W, Cheng P . Chemistry- A European Journal, 2018,24(15):3754.
[27]
Saththasivam J, Yiming W, Wang K, Jin J, Liu Z . Scientific Reports, 2018,8(1):7418.
[28]
Kong L H, Chen X H, Yu L G, Wu Z S, Zhang P Y . ACS Appl Mater Interfaces, 2015,7(4):2616.
[29]
Gao X, Zhou J, Du R, Xie Z, Deng S, Liu R, Liu Z, Zhang J . Advanced Materials, 2016,28(1):168.
[30]
Li F, Wang Z, Huang S, Pan Y, Zhao X . Advanced Functional Materials, 2018,1706867.
[31]
Liu Y, Su Y, Guan J, Cao J, Zhang R, He M, Gao K, Zhou L, Jiang Z . Advanced Functional Materials, 2018,28(13):1706545.
[32]
Xu Z, Wang L, Yu C, Li K, Tian Y, Jiang L . Advanced Functional Materials, 2018,28(5):1703970.
[33]
Lv W, Mei Q, Xiao J, Du M, Zheng Q . Advanced Functional Materials, 2017,27(48):1704293.
[34]
Yang Y, Li X, Zheng X, Chen Z, Zhou Q, Chen Y . Advanced Materials, 2018,30(9).
[35]
王正烈 (Wang Z L), 周亚平 (Zhou Y P), 李松林 (Li S L), 刘俊吉 (Liu J J) .物理化学下册第四版 (Physical Chemistry (Forth Edition)). 北京:高等教育出版社( Beijing: Higher Education Press), 2001. 12.
[36]
Young T . Philosophical Transactions of the Royal Society of London, 1805,95:65.
[37]
Wenzel R N . Indengchem, 1936,28(8):988.
[38]
Cassie A B D, Baxter S . Trans Faraday Soc., 1944,40(1):546.
[39]
曾新娟 (Zeng X J), 王丽 (Wang L), 皮丕辉 (Pi P H), 程江 (Cheng J), 文秀芳 (Wen X F), 钱宇 (Qian Y) . 化学进展( Progress in Chemistry), 2018,30(1):73.
[40]
Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D . Angewandte Chemie, 2010,43(15):2012.
[41]
Wang C F, Tzeng F S, Chen H G, Chang C J . Langmuir the ACS Journal of Surfaces & Colloids, 2012,28(26):10015.
[42]
Wang F, Lei S, Xue M, Ou J, Li C, Li W . Journal of Physical Chemistry C, 2014,118(12):6344.
[43]
Yang J, Zhang Z, Xu X, Zhu X, Men X, Zhou X . Journal of Materials Chemistry, 2012,22(7):2834.
[44]
Zhang F, Zhang W B, Shi Z, Wang D, Jin J, Jiang L . Advanced Materials, 2013,25(30):4192.
[45]
Liu X, Ge L, Li W, Wang X, Li F . ACS Appl Mater Interfaces, 2015,7(1):791.
[46]
Chen Q, Yu Z, Li F, Yang Y, Pan Y, Peng Y, Yang X, Zeng G . Journal of Chemical Technology and Biotechnology, 2018,93(3):761.
[47]
Lee W, Ahn Y . Bulletin of the Korean Chemical Society, 2017,38(12):1503.
[48]
Wang J, Chen Y . Journal of Applied Polymer Science, 2015,132(39):42614.
[49]
Li J, Yan L, Zhao Y, Zha F, Wang Q, Lei Z . Physical Chemistry Chemical Physics, 2015,17(9):6451.
[50]
Wang B, Li J, Wang G, Liang W, Zhang Y, Shi L, Guo Z, Liu W . ACS Appl Mater Interfaces, 2013,5(5):1827.
[51]
Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L . Advanced Materials, 2013,25(14):2071.
[52]
Chen B, Ma Q, Tan C, Lim T T, Huang L, Zhang H . Small, 2015,11(27):3319.
[53]
Reddy D H K, Yun Y S . Coordination Chemistry Reviews, 2016,315:90.
[54]
Li X, Yu J, Wageh S, Al-Ghamdi A A, Xie J . Small, 2016,12(48):6640.
[55]
Arbatan T, Fang X, Wei S . Chemical Engineering Journal, 2011,166(2):787.
[56]
Akhavan B, Jarvis K, Majewski P . ACS Appl Mater Interfaces, 2013,5(17):8563.
[57]
Yong J, Chen F, Yang Q, Bian H, Du G, Shan C, Huo J, Fang Y, Hou X . Advanced Materials Interfaces, 2016,3(7):1500650.
[58]
Kumar A, Sharma G, Mu N, Thakur S . Chemical Engineering Journal, 2015,280:175.
[59]
Duan C, Zhu T, Guo J, Wang Z, Liu X, Wang H, Xu X, Jin Y, Zhao N, Xu J . ACS Applied Materials & Interfaces, 2015,7(19):10475.
[60]
Wang B, Liu Y, Zhang Y, Guo Z, Zhang H, Xin J H, Zhang L . Advanced Materials Interfaces, 2015,2(13):1500234.
[61]
Ning C, Qian L, Jin L, Yong W, Bai Y, Szunerits S, Boukherroub R . Chemical Engineering Journal, 2017,326:17.
[62]
Wan W, Lin Y, Prakash A, Zhou Y . Journal of Materials Chemistry A, 2016,4(48):18687.
[63]
Shen Y, Li L, Xiao K, Xi J . ACS Sustainable Chemistry & Engineering, 2016,4(4):2351.
[64]
Gupta S, Tai N H . Journal of Materials Chemistry A, 2016,4(5):1550.
[65]
Fard A K, Rhadfi T, Mckay G, Al-Marri M, Abdala A, Hilal N, Hussien M A . Chemical Engineering Journal, 2016,293:90.
[66]
Cao X, Zang L, Bu Z, Sun L, Guo D, Wang C . Journal of Materials Chemistry A, 2016,4(27):10479.
[67]
Ma W, Zhang Q, Hua D, Xiong R, Zhao J, Rao W, Huang S, Zhan X, Chen F, Huang C . RSC Advances, 2016,6(16):12868.
[68]
Shuai Q, Yang X, Luo Y, Tang H, Luo X, Tan Y, Ma M . Materials Chemistry & Physics, 2015,162:94.
[69]
Ruan C, Ai K, Li X, Lu L . Angew. Chem. Int. Ed., 2014,126(22):5662.
[70]
Ge J, Shi L A, Wang Y C, Zhao H Y, Yao H B, Zhu Y B, Zhang Y, Zhu H W, Wu H A, Yu S H . Nature Nanotechnology, 2017,12(5):434.
[71]
Ge J, Ye Y D, Yao H B, Zhu X, Wang X, Wu L, Wang J L, Ding H, Yong N, He L H . Angewandte Chemie International Edition, 2014,53(14):3612.
[72]
Bi H, Xie X, Yin K, Zhou Y, Wan S, Ruoff R, Sun L . Journal of Materials Chemistry A, 2014,2(6):1652.
[73]
Sun H, Xu Z, Gao C . Advanced Materials, 2013,25(18):2554.
[74]
Li Y Q, Samad Y A, Polychronopoulou K, Alhassan S M, Liao K . ACS Sustainable Chemistry & Engineering, 2014,2(6):1492.
[75]
Bi H, Yin Z, Cao X, Xie X, Tan C, Huang X, Chen B, Chen F, Yang Q, Bu X . Advanced Materials, 2013,25(41):5916.
[1] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[2] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[3] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[4] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[5] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[6] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[7] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[8] Yun Lu, Hongjuan Shi, Yuefeng Su, Shuangyi Zhao, Lai Chen, Feng Wu. Application of Element-Doped Carbonaceous Materials in Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2021, 33(9): 1598-1613.
[9] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[10] Xiaoxiao Xiang, Xiaowen Tian, Huie Liu, Shuang Chen, Yanan Zhu, Yuqin Bo. Controlled Preparation of Graphene-Based Aerogel Beads [J]. Progress in Chemistry, 2021, 33(7): 1092-1099.
[11] Liqing Li, Panwang Wu, Jie Ma. Construction of Double Network Gel Adsorbent and Application for Pollutants Removal from Aqueous Solution [J]. Progress in Chemistry, 2021, 33(6): 1010-1025.
[12] Yubing Wang, Jie Chen, Wei Yan, Jianwen Cui. Preparation and Application of Conjugated Microporous Polymers [J]. Progress in Chemistry, 2021, 33(5): 838-854.
[13] Xiansheng Luo, Hanlin Deng, Jiangying Zhao, Zhihua Li, Chunpeng Chai, Muhua Huang. Synthesis and Application of Holey Nitrogen-Doped Graphene Material(C2N) [J]. Progress in Chemistry, 2021, 33(3): 355-367.
[14] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
[15] Jixiu Zhu, Qiaofen Chen, Titong Ni, Aimin Chen, Jianmin Wu. Application for Exhaled Gas Sensor Based on Novel Mxenes Materials* [J]. Progress in Chemistry, 2021, 33(2): 232-242.
Viewed
Full text


Abstract

Selective Oil/Water Separation Materials