中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1076-1085 DOI: 10.7536/PC200448 Previous Articles   Next Articles

• Review •

Investigation into Condensed-Matter Organic Synthesis under Mechanical Milling Conditions

Nana Wang1, Guanwu Wang1,**()   

  1. 1. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Contact: Guanwu Wang
  • About author:
  • Supported by:
    the National Natural Science Foundation of China(21372211)
Richhtml ( 26 ) PDF ( 594 ) Cited
Export

EndNote

Ris

BibTeX

Mechanochemical activation achieved by milling, shearing or pulling opens up new opportunities in synthetic chemistry. Mechanical milling, which is a green solvent-free synthetic methodology, has wide application prospects. In this review, we present the current status and future prospect of mechanochemical organic reactions in condensed matters such as solid state or sticky reaction mixture. Compared with traditional liquid-phase counterparts, mechanochemical condensed-matter organic reactions have the advantages of no usage of solvent, high reaction efficiency, short reaction time, lower reaction temperature, good selectivity, simple post-treatment, and suitability for substrates with poor solubility. In some mechanochemical organic reactions, different reaction products are generated miraculously, especially those not available in liquid-phase counterparts.

Contents

===1 Introduction

===2 Typical examples of condensed-matter organic reactions under ball-milling conditions

===2.1 Cases with reduced reaction time and reaction temperature

===2.2 Cases with selectivity enhancement

===2.3 Cases with different reaction pathways

===3 Main issues of condensed-matter organic reactions under ball-milling conditions

===3.1 Milling apparatus

===3.2 Milling media and frequency

===3.3 Liquid-assisted grinding(LAG) and grinding auxiliary

===3.4 Mechanochemical reaction mechanisms: in situ monitoring

===4 Conclusion and outlook

Scheme 1 Synthesis of polysubstituted trans-2,3-dihydropyrroles[12,13]
Scheme 2 Synthesis of [2]rotaxanes[21]
Scheme 3 Synthesis of boronic ester cage compounds[27,28]
Scheme 4 Oxidative addition of Re(Ⅰ) complexes[33]
Scheme 5 Disulfide metathesis[35]
Scheme 6 Oxidation of lignin-like methoxylated aromatics[38]
Scheme 7 Dimerization of [60]fullerene[39,40]
Scheme 8 Mechanochemical synthesis of C60-fused indane derivatives[42]
Scheme 9 Solution-based and mechanochemical copper-catalyzed A3 coupling using calcium carbide as the acetylene source[43,44]
Fig.1 (a) shaker ball mill.(b) planetary ball mill.(c) and (d) milling jars and balls[48]. Images(a~d) reproduced with permission from ref 48. Copyright 2019, The Royal Society of Chemistry
Fig.2 Schematic representation illustrating the mode of motion of the cross-section of a (a) shaker and (b) planetary ball mill
Fig.3 Range of η values and appearance of the reagents
Fig.4 In situ characterization techniques for mechanochemical reactions
[1]
Loupy A. Microwaves in Organic Synthesis. Wiley-VCH, 2006.
[2]
Yan M, Kawamata Y, Baran P S. Chem. Rev., 2017,117:13230.
[3]
Klán P, Wirz J. Photochemistry of Organic Compounds: From Concepts to Practice. Wiley, 2009.
[4]
Mason T J. Chem. Soc. Rev., 1997,26:443.
[5]
Wang G W. Chem. Soc. Rev., 2013,42:7668.
[6]
(a) Rightmire N R, Hanusa T P. Dalton Trans., 2016,45:2352; (b) Frišcic T. Chem. Soc. Rev., 2012,41:3493; (c) Garay A L, Pichon A, James S L. Chem. Soc. Rev., 2007,36:846; (d) Zhu S E, Li F, Wang G W. Chem. Soc. Rev., 2013,42:7535; (e) Hernández J G, Bolm C. Org. Chem., 2017,82:4007; (f) Andersen J, Mack J. Green Chem., 2018,20:1435.
[7]
Leber J D, Hoover J R E, Holden K G, Johnson R K, Hecht S M. J. Am. Chem. Soc., 1988,110:2992.
[8]
Li W, Khullar A, Chou S, Sacramo A, Gerratana B. Appl. Environ. Microbiol., 2009,75:2869.
[9]
Hertel L W, Xu Y C. WO2000000196A1, 2000.
[10]
Kahan J S, Kahan F M, Goegelman R, Currie S A, Jackson M, Stapley E O, Miller T W, Miller A K, Hendlin D, Mochales S, Hernandez S, Woodruff H B, Birnbaum J. Antibiot., 1979,32:1.
[11]
(a) Humphrey J M, Liao Y, Ali A, Rein T, Wong Y L, Chen H J, Courtney A K, Martin S F. Am. Chem. Soc., 2002,124:8584; (b) Herzon S B, Myers A G. Am. Chem. Soc., 2005,127:5342; (c) Martin R, Jäger A, Böhl M, Richter S, Fedorov R, Manstein D J, Gutzeit H O, Knölker H J. Angew. Chem. Int. Ed., 2009,48:8042; (d) Hayashi Y, Inagaki F, Mukai C. Org. Lett., 2011,13:1778; (e) Zhang H, Curran D P. Am. Chem. Soc., 2011,133:10376.
[12]
Li Y, Xu H, Xing M, Huang F, Jia J, Gao J. Org. Lett., 2015,17:3690.
[13]
Xu H, Liu H W, Chen K, Wang G W. Org. Chem., 2018,83:6035.
[14]
(a) Balzani V, Credi A, Raymo F M, Stoddart J F. Angew. Chem. Int. Ed., 2000,39:3348; (b) Kinbara K, Aida T. Chem. Rev., 2005,105:1377; (c) Tian H, Wang Q C. Chem. Soc. Rev., 2006,35:361; (d) Kay E R, Leigh D A, Zerbetto F. Angew. Chem. Int. Ed., 2007,46:72; (e) Li H, Zhang J N, Zhou W, Zhang H, Zhang Q, Qu D H, Tian H. Org. Lett., 2013,15:3070; (f) van Dongen S F M, Cantekin S, Elemans J A A W, Rowan A E, Nolte R J M. Chem. Soc. Rev., 2014,43:99; (g) Bruns C J, Stoddart J F. Acc. Chem. Res., 2014,47:2186; (h) Qu D H, Wang Q C, Zhang Q W, Ma X, Tian H. Chem. Rev., 2015,115:7543.
[15]
(a) Balzani V, Gómez López M, Stoddart J F. Acc. Chem. Res., 1998,31:405; (b) Chatterjee M N, Kay E R, Leigh D A. Am. Chem. Soc., 2006,128:4058; (c) Fioravanti G, Haraszkiewicz N, Kay E R, Mendoza S M, Bruno C, Marcaccio M, Wiering P G, Paolucci F, Rudolf P, Brouwer A M, Leigh D A. Am. Chem. Soc., 2008,130:2593; (d) Klajn R, Fang L, Coskun A, Olson M A, Wesson P J, Stoddart J F, Grzybowski B A. Am. Chem. Soc., 2009,131:4233; (e) Harada A, Takashima Y, Yamaguchi H. Chem. Soc. Rev., 2009,38:875; (f) Franz M, Januszewski J A, Wendinger D, Neiss C, Movsisyan L D, Hampel F, Anderson H L, Görling A, Tykwinski R R. Angew. Chem. Int. Ed., 2015,54:6645.
[16]
(a) Tachibana Y, Kihara N, Takata T. Am. Chem. Soc., 2004,126:3438; (b) Hattori G, Hori T, Miyake Y, Nishibayashi Y. Am. Chem. Soc., 2007,129:12930; (c) Lewandowski B, De Bo G, Ward J W, Papmeyer M, Kuschel S, Aldegunde M J, Gramlich P M E, Heckmann D, Goldup S M, D’Souza D M, Fernandes A E, Leigh D A. Science, 2013,339:189; (d) Leigh D A, Marcos V, Wilson M R. ACS Catal., 2014,4:4490; (e) Blanco V, Leigh D A, Marcos V, Morales Serna J A, Nussbaumer A L. Am. Chem. Soc., 2014,136:4905; (f) Hoekman S, Kitching M O, Leigh D A, Papmeyer M, Roke D. Am. Chem. Soc., 2015,137:7656; (g) Galli M, Lewis J E M, Goldup S M. Angew. Chem. Int. Ed., 2015,54:13545; (h) Kwan C S, Chan A S C, Leung K C F. Org. Lett., 2016,18:976.
[17]
(a) Saha B S, Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Adv. Funct. Mater., 2007,17:685; (b) Fernandes A, Viterisi A, Coutrot F, Potok S, Leigh D A, Aucagne V, Papot S. Angew. Chem. Int. Ed., 2009,48:6443; (c) Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddart J F. Acc. Chem. Res., 2011,44:903; (d) Barat R, Legigan T, Tranoy Opalinski I, Renoux B, Péraudeau E, Clarhaut J, Poinot P, Fernandes A E, Aucagne V, Leigh D A, Papot S. Chem. Sci., 2015,6:2608.
[18]
Several strategies for the construction of rotaxanes have been developed. For a recent review, see: (a) Xue M, Yang Y, Chi X, Yan X, Huang F. Chem. Rev., 2015,115:7398. For threading followed-by-stoppering, see: (b) Ogino H. Am. Chem. Soc., 1981,103:1303; (c) Isnin R, Kaifer A E. J. Am. Chem. Soc., 1991,113:8188; (d) Ashton P R, Grognuz M, Slawin A M Z, Stoddart J F, Williams D J. Tetrahedron Lett., 1991,32:6235; (e) Pun A, Hanifi D A, Kiel G, O’Brien E, Liu Y. Angew. Chem., Int. Ed., 2012,51:13119; For slipping, see: (f) Affeld A, Hübner G M, Seel C, Schalley C A. Eur. J. Org. Chem., 2001,2001:2877; (g) Chao S, Romuald C, Fournel Marotte K, Clavel C, Coutrot F. Angew. Chem., Int. Ed., 2014,53:6914. For threading-followed-by-swelling, see: (h) Chiu C W, Lai C C, Chiu S H. Am. Chem. Soc., 2007,129:3500. For threading-followed-by-swelling, see: (i) Yoon I, Narita M, Shimizu T, Asakawa M. Am. Chem. Soc., 2004,126:16740; (j) Hsueh S Y, Ko J L, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2011,50:6643. https://www.ncbi.nlm.nih.gov/pubmed/25734835

doi: 10.1021/cr5005869 pmid: 25734835
[19]
Dichtel W R, MiljanicO Š, Spruell J M, Heath J R, Stoddart J F. J. Am. Chem. Soc., 2006,128:10388. https://www.ncbi.nlm.nih.gov/pubmed/16895403

doi: 10.1021/ja063127i pmid: 16895403
[20]
(a) Thorwirth R, Stolle A, Ondruschka B, Wild A, Schubert U S. Chem. Commun., 2011,47:4370; (b) Mukherjee N, Ahammed S, Bhadra S, Ranu B C. Green Chem. 2013,15, 389; (c) Cook T L, Walker Jr A J, Mack J. Green Chem., 2013,15:617.
[21]
Li H G, Wang G W. Org. Chem., 2017,82:6341.
[22]
(a) James S L, Adams C J, Bolm C, Braga D, Collier P, Frišcic T, Grepioni F, Harris K D M, Hyett G, Jones W, Krebs A, Mack J, Maini L, Orpen A G, Parkin I P, Shearouse W C, Steed J W, Waddell D C. Chem. Soc. Rev., 2012,41:413; (b) Tan D, Loots L, Frišcic T. Chem. Commun., 2016,52:7760; (c) Do J L, Frišcic T. ACS Cent. Sci., 2017,3:13.
[23]
(a) Antesberger J, Cave G W V, Ferrarelli M C, Heaven M W, Raston C L, Atwood J L. Chem. Commun., 2005,7:892; (b) Pascu M, Ruggi A, Scopelliti R, Severin K. Chem. Commun., 2013,49:45.
[24]
(a) Orita A, Okano J, Tawa Y, Jiang L, Otera . J. Angew. Chem., ., 2004,43:3724; (b) Hsueh S Y, Cheng K W, Lai C C, Chiu S H. Angew. Chem. Int. Ed., 2008,47:4436; (c) Hsu C C, Chen N C, Lai C C, Liu Y H, Peng S M, Chiu S H. Angew. Chem. Int. Ed., 2008,47:7475.
[25]
(a) Biswal B P, Chandra S, Kandambeth S, Lukose B, Heine T, Banerjee R. Am. Chem. Soc., 2013,135:5328; (b) Das G, Shinde D B, Kandambeth S, Biswal B P, Banerjee R. Chem. Commun., 2014,50:12615.
[26]
Içli B, Christinat N, Tönnemann J, Schüttler C, Scopelliti R, Severin K. Am. Chem. Soc., 2009,131:3154.
[27]
Li H G, Li L, Xu H, Wang G W. Curr. Org. Chem., 2018,22:923.
[28]
Zhang G, Presly O, White F, Oppel I M, Mastalerz M. Angew. Chem. Int. Ed., 2014,53:1516.
[29]
Howard J L, Cao Q, Browne D L. Chem. Sci., 2018,9:3080.
[30]
(a) Bala M D, Coville N J. Organomet. Chem., 2007,692:709; (b) Bala M D, Budhai A, Coville N J. Organometallics, 2004,23:2048; (c) Coville N J, Cheng L. J. Organomet. Chem., 1998,571:149.
[31]
(a) Braga D, Giaffreda S L, Grepioni F. Chem. Commun., 2006,3877; (b) Braga D, Giaffreda S L, Grepioni F, Pettersen A, Maini L, Curzi M, Polito M. Dalton Trans., 2006,1249.
[32]
(a) Egbert J D, Slawin A M Z, Nolan S P. Organometallics, 2013,32:2271; (b) Lewiński J, Dutkiewicz M, Lesiuk M, Sliviński W, Zelga K, Justyniak I, Lipkowski J. Angew. Chem. Int. Ed., 2010,49:8266.
[33]
Hernández J G, Macdonald N A J, Mottillo C, Butler I S, Frišcic T. Green Chem., 2014,16:1087.
[34]
(a) Cheng L, Coville N J. Organometallics, 1996,15:867; (b) King R B, Reimann R H, Darensbourg D J. Organomet. Chem., 1975,93:C23; (c) King R B, Reimann R H. Inorg. Chem., 1976,15:179.
[35]
Belenguer A M, Frišcic T, Day G M, Sanders J K M. Chem. Sci., 2011,2:696.
[36]
(a) Chen X, Yang H, Zhong Z, Yan N. Green Chem., 2017,19:2783; (b) Kleine T, Buendia J, Bolm C. Green Chem., 2013,15:160; (c) Hick S M, Griebel C, Restrepo D T, Truitt J H, Buker E J, Bylda C, Blair R G. Green Chem., 2010,12:468; (d) Meine N, Rinaldi R, Schüth F. ChemSusChem, 2012,5:1449; (e) Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski M D K. Catal. Today, 2014,234:24; (f) Boissou F, Sayoud N, Vigier K D O, Barakat A, Marinkovic S, Estrine B, Jérôme F. ChemSusChem, 2015,8:3263; (g) Rechulski M D K, Käldström M, Richter U, Schüth F, Rinaldi R. Ind. Eng. Chem. Res., 2015,54:4581; (h) Jérôme F, Chatel G, Vigier K D O. Green Chem., 2016,18:3903.
[37]
Huber G W, Iborra S, Corma A. Chem. Rev., 2006,106:4044.
[38]
Collom S L, Anastas P T, Beach E S, Crabtree R H, Hazari N, Sommer T J. Tetrahedron Lett., 2013,54:2344.
[39]
Keshavarz K M, Knight B, Srdanov G, Wudl F. Am. Chem. Soc., 1995,117:11371.
[40]
Wang G W, Komatsu K, Murata Y, Shiro M. Nature, 1997,387:583.
[41]
Komatsu K, Wang G W, Murata Y, Tanaka T, Fujiwara K, Yamamoto K, Saunders M. Org. Chem., 1998,63:9358.
[42]
Su Y T, Wang G W. Org. Lett., 2013,15:3408.
[43]
Lin Z, Yu D, Sum Y N, Zhang Y. ChemSusChem, 2012,5:625.
[44]
Turberg M, Ardila-Fierro K J, Bolm C, Hernández J G. Angew. Chem. Int. Ed., 2018,57:10718.
[45]
Takacs L. Chem. Soc. Rev., 2013,42:7649.
[46]
Stolle A, Schmidt R, Jacob K. Faraday Discuss. 2014,170:267; Schmidt R, Burmeister C F, Baláž M, Kwade A, Stolle A. Org. Process Res. Dev., 2015,19:427.
[47]
(a) Baláž P. Springer-Verlag: Berlin, 2008; (b) Burmeister C F, Kwade A. Chem. Soc. Rev., 2013,42:7660.
[48]
Tan D, García F. Chem. Soc. Rev., 2019,48:2274.
[49]
Frišcic T, Jones W. Cryst. Growth Des. 2009,9:1621.
[50]
Frišcic T, Childs S L, Rizvi S A A, Jones W. CrystEngComm, 2009,11:418.
[51]
(a) Frišcic T, Halasz I, Beldon P J, Belenguer A M, Adams F, Kimber S A J, Honkimäki V, Dinnebier R E. Nat. Chem., 2013,5:66; (b) Halasz I, Kimber S A J, Beldon P J, Belenguer A M, Adams F, Honkimäki V, Nightingale R C, Dinnebier R E, Frišcic T. Nat. Protoc., 2013,8:1718.
[52]
(a) Bowmaker G A. Chem. Commun., 2013,49:334; (b) Užarevic K, Halasz I, Frišcic T. J. Phys. Chem. Lett., 2015,6:4129.
No related articles found!