中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (10): 1452-1461 DOI: 10.7536/PC200335 Previous Articles   Next Articles

Near-Infrared Light Responsive Liquid Crystal Elastomers

Meng Wang1,**(), Danyang Ma1, Chengjie Wang2   

  1. 1. College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
    2. China National Aviation Fuel Supply Co.,Ltd., Beijing 100088, China
  • Received: Revised: Online: Published:
  • Contact: Meng Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(51903048); Jiangsu Provincial Natural Science Foundation(BK20180406); Fundamental Research Funds for the Central Universities(2242020K40034)
Richhtml ( 54 ) PDF ( 1135 ) Cited
Export

EndNote

Ris

BibTeX

As one booming category of smart polymeric materials, stimuli-responsive liquid crystal elastomers (LCEs) are very promising owing to the large and reversible shape deformations response to external stimuli (heat, light, electric or magnetic field, etc.). Due to the changes of microscopic orders or molecular structures of uniaxial-aligned mesogens, the whole LCE materials could execute very large and reversible macroscopic actuation during the LC-to-isotropic phase transition process. Among them, near-infrared light (NIR-light) responsive LCEs have attracted scientific attention because NIR-light has a strong penetration and low toxicity to biological tissues. The NIR-induced deformation mechanisms of LCEs can be divided into two main categories. One is relying on the trans-cis variations of azobenzene chromophores triggered by NIR-light which can be converted into low-wavelength lights by doping inorganic or organic up-conversion materials. The other type of light-responsive LCEs takes advantage of the photo-thermal effect of thermal conductive fillers to transform light into heat which further induces the LC-to-isotropic phase transition and thus make the LCE materials shrink/expand. These characteristics endow NIR-light responsive LCE materials with potential applications as mechanical actuators, artificial organs, smart surfaces, microrobots, etc. This article reviewes the developments of NIR-light responsive LCEs, and also introduces the main deformation mechanisms and applications of NIR-light responsive LCEs in detail. Besides, the article further provides a view of prospective development in future for NIR-light responsive LCEs and actuators.

Contents

1 Introduction

2 Near-infrared light responsive liquid crystal elastomers based on up-conversion effect

3 Near-infrared light responsive liquid crystal elastomers based on photothermal effect

3. 1 Carbon photothermal materials

3. 2 Noble metal photothermal materials

3.3 Organic photothermal materials

3. 4 Semiconductor photothermal materials

4 Applications

4.1 Soft robots

4.2 Bionic devices

5 Conclusion and outlook

Fig.1 LC-to-isotropic phase transition of LCEs
Fig.2 Schematic diagram of reversible mechanical actuation of graphene/LCE nanocomposites when NIR optical switches are switched[21]
Fig.3 The NIR-induced shrinking behavior of SWCNT-incorporated LCE films[27]
Fig.4 The snapshots of laser irradiation induced shape change for a LCE/AuNR pillar[30]
Fig.5 The shrinking deformation of LCE/YHD796 composite film under NIR irradiation[34]
Fig.6 Inch worm walker device consisting of asymmetric double-layer film and crawling process[64]
Fig.7 Walking process of light multi-directional double-layer LCE walker[66]
Fig.8 Schematic illustration and photographs showing the polymer “crane” executing a series of combinational light-driven robot-like motion tasks[51]
Fig.9 A tri-colour-changing “flower” with its blossom blooming and unblooming modulated by light with different wavelengths[70]
Fig.10 Ultraviolet and near-infrared photoresponsive behaviors of a same-sized-bilayer LCE ribbon[71]
[1]
Yakacki C M, Shandas R, Lanning C, Rech B, Eckstein A, Gall K. Biomaterials, 2007,28:2255. doi: 10.1016/j.biomaterials.2007.01.030e295b168-bbc4-405f-ac96-9e4d50fc68f8
[2]
White T J, Broer D J. Nat. Mater, 2015,14:1087.

pmid: 26490216
[3]
徐婉娴(Xu W X), 尹若元(YiR Y), 林里(LinL), 俞燕蕾(YuY L). 化学进展 (Progress in Chemistry), 2008,20(1):140. db640977-3d3e-4f17-9113-fcfea68b2e8f
[4]
戴俊燕(Dai J Y), 刘伟昌(LiuW C), 连彦青(LianY Q), 刘德山(LiuD S). 功能高分子学报 (Journal of Functional Polymers), 2000,13(3):349.
[5]
de Gennes P G. Acad. Sci. Ser. B, 1975,281:2.
[6]
Küpfer J, Finkelmann H. Macromol. Rapid Commun, 1991,12:717.
[7]
Ware T H, McConney M E, Wie J J, Tondiglia V P, White T J. Science, 2015,347:982. doi: 10.1126/science.1261019

pmid: 25722408
[8]
Finkelmann H, Nishikawa E, Pereira G G, Warner M. Physl. Rev. Lett, 2001,87:015501.
[9]
Yu Y L, Nakano M, Ikeda T. Nature, 2003,425:145.

pmid: 12968169
[10]
Broer D J, Bastiaansen C M W, Debije M G, Schenning A. Angew. Chem. Int. Ed., 2012,51:7102.
[11]
Winkler M, Kaiser A, Krause S, Finkelmann H, Schmidt A M. Macromol. Symp, 2010,291:186.
[12]
Harris K D, Bastiaansen C W M, Lub J, Broer D J. Nano. Lett., 2005,5:1857.

pmid: 16159238
[13]
Wei J, Yu Y L. Soft Matter, 2012,8:8050.
[14]
Lehmann W, Skupin H, Tolksdorf C, Gebhard E, Zentel R, Kruger P, Losche M, Kremer F. Nature, 2001,410:447.

pmid: 11260707
[15]
Li X, Ma S D, Hu J, Ni Y, Lin Z Q, Yu H F. J. Mater. Chem. C, 2019,7:622.
[16]
Hu J, Li X, Ni Y, Ma S D, Yu H F. J. Mater. Chem. C, 2018,6:10815.
[17]
Ikeda T, Nakano M, Yu Y L, Kanazawa O, Tsutsumi A. Adv. Mater., 2003,15:201.
[18]
Li M H, Keller P, Lin B P, Wang X, Brunet M. Adv. Mater., 2003,15:569.
[19]
Cheng F T, Zhang Y Y, Yin R Y, Yu Y L. J. Mater. Chem., 2010,20:4888.
[20]
Wu W, Yao L M, Yang T S, Yin R Y, Li F Y, Yu Y L. J. Am. Chem. Soc., 2011,133:15810.

pmid: 21913658
[21]
Yang Y K, Zhan W J, Peng R G, He C G, Pang X C, Shi D, Jiang T, Lin Z Q. Adv. Mater, 2015,27:6376.

pmid: 26389820
[22]
Iijima S, Ichihashi T. Nature, 1993,363:603.
[23]
Yang L Q, Setyowati K, Li A, Gong S Q, Chen J. Adv. Mater., 2008,20:2271.
[24]
Ji Y, Huang Y Y, Rungsawang R, Terentjev E M. Adv. Mater, 2010,22:3436. doi: 10.1002/adma.200904103

pmid: 20391542
[25]
Marshall J E, Ji Y, Torras N, Zinoviev K, Terentjev E M. Soft Matter, 2012,8:1570.
[26]
Li C S, Liu Y, Lo C W, Jiang H R. Soft Matter, 2011,7:7511.
[27]
Wang M, Sayed M S, Guo L X, Lin B P, Yang H. Macromolecules, 2016,49:663.
[28]
Sun Y, Evans J S, Lee T, Senyuk B, Keller P, He S, Smalyukh I I. Appl. Phys. Lett, 2012,100:241901.
[29]
Liu X Y, Wei R B, Hoang P T, Wang X G, Liu T, Keller P. Adv. Funct. Mater, 2015,25:3022.
[30]
Liu X Y, Wang X G, Liu T, Keller P. Macromolecules, 2016,49:8322.
[31]
Yang H, Liu J J, Wang Z F, Guo L X, Keller P, Lin B P, Sun Y, Zhang X Q. Chem. Commun, 2015,51:12126.
[32]
de Haan L T, Gimenez-Pinto V, Konya A, Nguyen T S, Verjans J M N, Sánchez-Somolinos C, Selinger J V, Selinger R L B, Broer D J, Schenning A P H J. Adv. Funct. Mater., 2014,24:1251.
[33]
de Haan L T, Carlos S S, Bastiaansen C M W, Schenning A P H J, Broer D J. Angew. Chem. Int. Ed., 2012,124:12637.
[34]
Guo L X, Liu M H, Sayed M S, Lin B P, Keller P, Zhang X Q, Sun Y, Yang H. Chem. Sci., 2016,7:4400. doi: 10.1039/c6sc00758a

pmid: 30155087
[35]
Liu L, Liu M H, Deng L L, Lin B P, Yang H. J. Am. Chem. Soc., 2017,139:11333.

pmid: 28786668
[36]
Liu W, Guo L X, Lin B P, Zhang X Q, Sun Y, Yang H. Macromolecules, 2016,49:4023.
[37]
葛斯佳(Ge S J), 单周楠(ShanZ N), 邓琳琳(DengL L), 林保平(LinB P), 杨洪(Yang H). 高分子学报 (Acta Polymerica Sinica), 2017,10:1633.
[38]
Jiang Z C, Xiao Y Y, Zhao Y. Adv. Opt. Mater, 2019,7:1900262.
[39]
Pang X L, Lv J A, Zhu C Y, Qin L, Yu Y L. Adv. Mater, 2019,31:1904224.
[40]
Zeng H, Lahikainen M, Liu L, Ahmed Z, Wani O M, Wang M, Yang H, Priimagi A. Nat. Commun., 2019,10:5057. doi: 10.1038/s41467-019-13077-6

pmid: 31700006
[41]
Kragt A J, Hoekstra D C, Stallinga S, Broer D J, Schenning A P H J. Adv. Mater., 2019,31:1903120.
[42]
Ge F, Zhao Y. Adv. Funct. Mater, 2020,30:1901890.
[43]
Lu H F, Wang M, Chen X M, Lin B P, Yang H. J. Am. Chem. Soc., 2019,141:14364.

pmid: 31429282
[44]
Zeng H, Wani O M, Wasylczyk P, Priimagi A. Macromol. Rapid Commun, 2017,39:1700224.
[45]
Qian X J, Chen Q M, Yang Y, Xu Y S, Li Z, Wang Z H, Wu Y H, Wei Y, Ji Y. Adv. Mater., 2018,30:1801103.
[46]
Palagi S, Mark A G, Reigh S Y, Melde K, Qiu T, Zeng H, Parmeggiani C, Martella D, Sanchez . Nat. Mater., 2016,15:647.
[47]
Si Q Y, Feng Y Y, Yang W X, Fu L X, Yan Q H, Dong L Q, Long P, Feng W. ACS Appl. Mater. Interfaces, 2018,10:29909.

pmid: 30047262
[48]
Lahikainen M, Zeng H, Priimagi A. Nat. Commun., 2018,9:4148.

pmid: 30297774
[49]
Huang C L, Lv J A, Tian X J, Wang Y C, Yu Y L, Liu J. Sci. Rep., 2015,5:1.
[50]
Zeng H, Wasylczyk P, Wiersma D S, Priimagi A. Adv. Mater., 2018,30:1703554.
[51]
Lu X L, Zhang H, Fei G X, Yu B, Tong X, Xia H S, Zhao Y. Adv. Mater., 2018,30:1706597.
[52]
Ma S D, Li X, Huang S, Hu J, Yu H F. Angew. Chem. Int. Ed., 2019,58:2655.
[53]
Zeng H, Wani O M, Wasylczyk P, Kaczmarek R, Priimagi A. Adv. Mater., 2017,29:1701814.
[54]
Oosten C L V, Bastiaansen C W M, Broer D J. Nat. Mater., 2009,8:677.
[55]
Wani O M, Zeng H, Priimagi A. Nat. Commun., 2017,8:1.

pmid: 28232747
[56]
Lv J A, Liu Y Y, Wei J, Chen E Q, Qin L, Yu Y L. Nature, 2016,537:179. doi: 10.1038/nature19344

pmid: 27604946
[57]
Vantomme G, Gelebart A H, Broer D J, Meijer E W. Tetrahedron, 2017,73:4963.
[58]
Xiong Y B, Zhang L D, Weis P, Naumov P, Wu S. J. Mater. Chem. A, 2018,6:3361.
[59]
Yamada M, Kondo M, Mamiya J I, Yu Y, Kinoshita M, Barrett C J, Ikeda T. Angew. Chem. Int. Ed., 2008,47:4986.
[60]
Wei W Y, Zhang Z W, Wei J, Li X F, Guo J B. Adv. Opt. Mater, 2018,6:1800131.
[61]
Zhang L D, Liang H R, Jacob J, Naumov P. Nat. Commun., 2015,6:7429.

pmid: 26067649
[62]
Kirillova A, Maxson R, Stoychev G, Gomillion C T, Ionov L. Adv. Mater., 2017,29:703443.
[63]
Nocentini S, Parmeggiani C, Martella D, Wiersma D S. Adv. Opt. Mater, 2018,6:1800207.
[64]
Kohlmeyer R R, Chen J. Angew. Chem. Int. Ed., 2013,125:9404.
[65]
Hu J, Kuang Z Y, Tao L, Huang Y F, Wang Q, Xie H L, Chen E Q. ACS Appl. Mater. Interfaces, 2019,10:29909. doi: 10.1021/acsami.8b08025

pmid: 30047262
[66]
Zuo B, Wang M, Lin B P, Yang H. Nat. Commun., 2019,10:4539. doi: 10.1038/s41467-019-12583-x

pmid: 31586123
[67]
Ge F, Yang R, Tong X, Camerel F, Zhao Y. . Angew. Chem. Int. Ed., 2018,130:11932.
[68]
Zhang Y B, Wang Z H, Yang Y, Chen Q M, Qian X J, Wu Y H, Liang H, Xu Y S, Wei Y, Ji Y. Sci. Adv., 6:eaay8606.

pmid: 32158947
[69]
Li C S, Liu Y, Huang X Z, Jiang H R. Adv. Funct. Mater, 2012,22:5166.
[70]
Zuo B, Wang M, Lin B P, Yang H. Chem. Mater., 2018,30:8079.
[71]
Wang M, Lin B P, Yang H. Nat. Commun., 2016,7:13981. doi: 10.1038/ncomms13981
[72]
Wang M, Han Y, Guo L X, Lin B P, Yang H. Liq. Cryst., 2019,46:1231.
[73]
Wang Z J, Li K, He Q G, Cai S Q. Adv. Mater, 2019,31:1806849.
[1] Meng Wang, Jianfeng Yang. Liquid Crystal Elastomers Based Soft Robots [J]. Progress in Chemistry, 2022, 34(1): 168-177.
[2] Mingxin Zheng, Min Zeng, Xi Chen, Jinying Yuan. Structures and Applications of Photo-Responsive Shape-Changing Liquid Crystal Polymers [J]. Progress in Chemistry, 2021, 33(6): 914-925.
[3] Jing Wen, Yuhong Li, Li Wang, Xiunan Chen, Qi Cao, Naipu He. Carbon Dioxide Smart Materials Based on Chitosan [J]. Progress in Chemistry, 2020, 32(4): 417-422.
[4] Qian Zhao, Shenghua Li, Yu Liu*. Construction and Functions of Supramolecular Cyclodextrin Gels [J]. Progress in Chemistry, 2018, 30(5): 673-683.
[5] Hongxi Wang, Yuting Xiong, Guangyan Qing*, Taolei Sun*. Biomolecular Responsive Polymer Materials [J]. Progress in Chemistry, 2017, 29(4): 348-358.
[6] Xiong Xingquan*, Jiang Yunbing. Reversible Diels-Alder Reaction [J]. Progress in Chemistry, 2013, 25(06): 999-1011.
[7] Xie Rui, Yang Mei, Cheng Changjing, Jiang Jing, Chu Liangyin. Molecular-Recognition and Thermo-Responsive Composite Smart Polymeric Materials [J]. Progress in Chemistry, 2012, 24(0203): 195-202.
[8] Wang Haiping, Rong Minzhi, Zhang Mingqiu. Self-Healing Polymers and Polymer-Based Composites Containing Microcapsules [J]. Progress in Chemistry, 2010, 22(12): 2397-2407.
[9] Luo Chunhua1,2 Dong Qiujing1 Zheng Zhaohui2 Ding Xiaobin2** Peng Yuying2**. Gold Nanoparticles Coated with Stimuli Responsive Polymer [J]. Progress in Chemistry, 2009, 21(12): 2674-2681.
[10] Cao Liangcheng|Wang Yuechuan*

. Preparation and Mechanism of Electrochromic Viologens [J]. Progress in Chemistry, 2008, 20(09): 1353-1360.
[11] Xiong Lijun|Hu Xiaobo|Liu Xinxing|Tong Zhen**. Polymer-Laponite Nanocomposite Hydrogels with Super-Elongation [J]. Progress in Chemistry, 2008, 20(04): 464-468.