中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1745-1752 DOI: 10.7536/PC200635 Previous Articles   Next Articles

Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes

Chenghao Zhu1, Junliang Zhang1,**()   

  1. 1. DDepartment of Chemistry, Fudan University, Shanghai 200438, China
  • Received: Revised: Online: Published:
  • Contact: Junliang Zhang
  • Supported by:
    the National Natural Science Foundation of China(21672067)
Richhtml ( 16 ) PDF ( 791 ) Cited
Export

EndNote

Ris

BibTeX

As an important unit of molecular structure and organic building blocks, the development of new synthetic methods of allene has received much attention. The Heck and related cascade reaction of alkenes is arguably one of the most synthetically versatile method. However, the Heck reaction of alkyl-alkynes leading to allenes has lagged behind due to the energetically unfavored β-hydride elimination of vinyl palladium species. Several competitive reactions such as protonation, carbohalogenation and cascade reaction exist. Moreover, the isomerization of allene and the regioselectivity of unsymmetrical alkyl-alkynes also limited this research progress. To effectively promote β-hydride elimination of vinyl palladium species, several commonly-used strategies are the increasing reaction temperature, introduction of ortho-substituent to aryl halides and the development of ligand. In this mini-review, Heck and related reaction of alkyl-alkynes including β-hydride elimination reactions of vinyl palladium species, protonation reaction, carbohalogenation reaction, and cascade reaction are emphasized. Finally, the major limitation and an outlook this type of reaction are provided.

Contents

1 Introduction

2 Heck-type reaction pathway of alkyl-alkynes

3 Heck reaction of alkyl-alkynes

4 Other competitive reactions

4.1 Carbohalogenation process

4.2 Domino-Heck cyclization process

4.3 Activation process of aryl C-H

5 β-hydride elimination reactions

6 Conclusion and outlook

Scheme 1 Heck reaction path of alkynes
Scheme 2 First discovery of Heck reaction of alkynes[9]
Scheme 3 Palladium-catalyzed Heck reaction of aryl bromides with alkynes[10]
Scheme 4 Palladium-catalyzed intramolecular Heck reaction between aryl chlorides and alkynes[11]
Scheme 5 Palladium-catalyzed Heck reaction of aryl bromides with alkynes[12]
Scheme 6 Palladium-catalyzed Heck reaction of aryl triflates and alkynes[13]
Scheme 7 Palladium-catalyzed Heck reaction between aryl iodides and 1-aryl-1-alkynes[14]
Scheme 8 Pd-Catalyzed Heck reaction of 4-iodo-2-quinolone and alkyne[15]
Scheme 9 Palladium-catalyzed enantioselective Heck reaction of aryl triflates and alkynes[16]
Scheme 10 Carbohalogenation reaction[17,18,19,20]
Scheme 11 Domino-Heck cyclizations[21,22,23]
Scheme 12 Anti-carbopalladation/Heck reaction[24]
Scheme 13 Vinylic to aryl palladium migration[25]
Scheme 14 Scheme 14 Pd-catalyzed β-Hydride elimination of enol triflates[3a,3b,4a]
[1]
( a) Torborg C, Beller M . Adv. Synth. Catal., 2009, 351: 3027.;( b) Devendar P, Qu R Y, Kang W M, He B, Yang G F. J. Agric. Food Chem., 2018,66:8914.
[2]
( a) Cartney D M, Guiry P J . Chem. Soc. Rev., 2011, 40: 5122.;( b) Beletskaya I P, Cheprakov A V. Chem. Rev., 2000, 100: 3009.;, 2003,103:2945.
[3]
( a) Crouch I T, Neff R K, Frantz D E . J. Am. Chem. Soc., 2013, 135: 4970.;( b) Arba M E, Dibrell S E, Crouch I T, Frantz D E. Org. Lett., 2017, 19: 5446.;, 1996,96:365.
[4]
( a) Crouch I T, Dreier T, Frantz D E . Angew. Chem. Int. Ed., 2011, 50: 6128.;( b) Fu C, Ma S. Org. Lett., 2005, 7: 1605.;, 2009,15:4224.
[5]
( a) Hoffmann-Röder A, Krause N . Angew. Chem. Int. Ed., 2004, 43: 1196.;( b) Rivera-Fuentes M S P, Diederich F. Angew. Chem. Int. Ed., 2012, 51: 2818.;, 2010,8:1905.
[6]
( a) Wei Y, Shi M . Org. Chem. Front., 2017, 4: 1876.;( b) Mascareñas J L, Varela I, López F. Acc. Chem. Res., 2019, 52: 465.; 2014,43:3106.
[7]
( a) Neff R K, Frantz D E . Tetrahedron, 2015, 71: 7.;( b) Alonso J M, Quirós M T, Muñoz M P. Org. Chem. Front., 2016,3:1186.
[8]
( a) Yu S, Ma S. . Chem. Commun., 2011, 47: 5384.;(b) Ma S. Acc. Chem. Res., 2003, 36: 701.;(c) Yu S, Ma S. Angew. Chem. Int. Ed., 2012, 51: 3074.;(d) Ma S. Acc. Chem. Res., 2009, 42: 1679.;(e) Ma S. Chem. Rev., 2005, 105, 7: 2829.;(f) Huang X, Ma S. Acc. Chem. Res., 2019, 52, 5: 1301.;(g) Ye J, Ma S. Acc. Chem. Res.,2014, 47, 4:989.
[9]
Tao W, Silverberg L J, Rheingold A L, Heck R F . Organometallics, 1989,8:2550.
[10]
Pivsa-Art S, Satoh T, Miura M, Nomura M. Chem. Lett ., 1997,26:823.
[11]
Chapman L M, Adams B, Kliman L T, Makriyannis A , Hamblett C L. Tetrahedron Lett., 2010,51:1517.
[12]
Nella N, Parker E, Hitce J, Larini P, Jazzar R , Baudoin O. Chem. Eur. J., 2014,20:13272.
[13]
Neff R K, Frantz D E . Am. Chem. Soc., 2018,140:17428.
[14]
Lv W, Chen Y, Zhao Z, Wen S, Cheng G. Org. Lett ., 2019,21:7795.
[15]
Yamamoto Y, Jiang J , Yasui T. Chem. Eur. J., 2020,26:3749.
[16]
Zhu C, Chu H, Li G, Ma S, Zhang J . Am. Chem. Soc. 2019,141:1924.
[17]
Le C M , Menzies P J C, Petrone D A, Lautens M. Angew. Chem. Int. Ed., 2015,54:254.
[18]
Lee Y H , Morandi B. Angew. Chem. Int. Ed., 2019,58:6444.
[19]
Takahashi T, Kuroda D, Kuwano T, Yoshida Y, Kurahashi T, Matsubara S. . Chem. Commun., 2018,54, 12750.
[20]
Takahashi T, Kurahashi T, Matsubara S. ACS Catal ., 2020,10:3773.
[21]
Tietze L F, Kahle K , Raschke T. Chem. Eur. J., 2002,8:401.
[22]
Schweizer S, Tokan W M, Parsons P J , Meijere A d. Eur.[J]. Org. Chem., 2010,4687.
[23]
Blouin S, Pertschi R, Schoenfelder A, Suffert J , Blond G. Adv. Synth. Catal., 2018,360:2166.
[24]
( a) Pawliczek M, Schneider T F, Maaß C, Stalke D, Werz D B . Angew. Chem. Int. Ed., 2015, 54: 4119.;( b) Pawliczek M, Milde B, Jones P G, Werz D B. Chem. Eur. J., 2015, 21: 12303.;, 2015,6278.
[25]
Zhao J, Larock R C . Org. Chem., 2006,71:5340.
[1] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[2] Yudong Yang, Jingsong You. Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics [J]. Progress in Chemistry, 2020, 32(11): 1824-1834.
[3] Wang Jiandong, Xu Jiaxi. Stereoselective Models for the Electrophilic Addition on the Double Bond Adjacent to A Chiral Centre [J]. Progress in Chemistry, 2016, 28(6): 784-800.
[4] Jiang Yubo, Liu Yaowen, Zhang Wensheng, Cheng Huiling, Kuang Chunxiang, Chen Zhen. Synthesis of 1,3-Diynes [J]. Progress in Chemistry, 2016, 28(4): 507-527.
[5] Lei Pengfei, Zhang Wensheng, Kuang Chunxiang, Jiang Yubo. Synthesis of Terminal Arylacetylenes [J]. Progress in Chemistry, 2016, 28(2/3): 317-327.
[6] Jia Sisi, Chao Jie, Fan Chunhai, Liu Huajie. DNA Origami Nanoreactors [J]. Progress in Chemistry, 2014, 26(05): 695-705.
[7] Weng Jianquan, Yu Zhiqin, Zhang Guofu. Direct Oxidative Coupling Between Unfunctionalized Arene and Olefin [J]. Progress in Chemistry, 2012, 24(04): 523-544.
[8] Wei Pingyu Yang Qinglin Guo Lin. Bismuth Oxyhalide Compounds as Photocatalysts [J]. Progress in Chemistry, 2009, 21(09): 1734-1741.
[9] Shi Ronghui1,Liu Ye2,Liu Pu1*|Wang Xiangyu1. Application of Palladacycles in Heck Reactions [J]. Progress in Chemistry, 2007, 19(0203): 283-291.
[10] Junfang Gong,Chen Xu,Yangjie Wu**. Transition-Metal Catalyzed α-Arylation of Carbonyl Derivatives and Compounds with Acidic Hydrogen [J]. Progress in Chemistry, 2006, 18(06): 752-760.
[11] . Progress in Palladium??Catalyzed Amination of Aryl Halides [J]. Progress in Chemistry, 2005, 17(02): 286-292.
[12] Gao Shuang,Hu Xinquan,Zheng Zhuo*. Application of Axially Chiral Phosphinamine Ligands in Asymmetric Catalysis [J]. Progress in Chemistry, 2002, 14(06): 438-.