中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (05): 695-705 DOI: 10.7536/PC140130 Previous Articles   Next Articles

• Review •

DNA Origami Nanoreactors

Jia Sisi, Chao Jie, Fan Chunhai*, Liu Huajie*   

  1. Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Basic Research Program of China (No. 2013CB932800) and the National Natural Science Foundation of China (No. 21103219)

PDF ( 1012 ) Cited
Export

EndNote

Ris

BibTeX

It is a new idea to construct DNA nanoreactor with nanometer addressability using DNA origami technology. One of the most remarkable features of the DNA origami method is the precise addressability of the structures formed. By biologically and chemically modifying specific staple strands, it is possible to functionalize DNA origami nanostructures with small chemical molecules, biomacromolecules and artificial nanomaterials on well-defined positions with nanoscale precision. The shape diversity and good biological compatibility of DNA origami makes it a perfect nanomaterial for constructing nanoscale biomimetic confinement environment. In this review, we first introduce the general method and the latest progress for nano-addressable positioning of different materials and molecules on DNA origami nanostructures. Then utilizing DNA origami nanostructures as nano-addressable reactors with confined nanoscale spaces, we focus on the regulation of chemical and biochemical reactions in these nanoreactors. At the end, the future directions and potential applications of DNA origami nanoreactors are foreseen.

Contents
1 Introduction
2 Nano-addressable positioning on DNA origami nanostructures
2.1 Positioning of functional groups
2.2 Positioning of biomacromolecules
2.3 Positioning of synthetic nanomaterials
3 Regulation of single molecular chemical reactions
3.1 Cleavage reactions
3.2 Coupling reactions
3.3 Polymerization reactions
4 Regulation of single molecular bio-recognitions and biochemical reactions
4.1 Molecular recognitions
4.2 Enzymatic cascade reactions
5 Conclusion and outlook

CLC Number: 

[1] 王镜岩(Wang J Y), 朱圣庚(Zhu S G), 徐长法(Xu C F). 生物化学(Biochemistry). 北京: 高等教育出版社(Beijing: Higher Education Press), 2002.
[2] Agapakis C M, Boyle P M, Silver P A. Nat. Chem. Biol., 2012, 8: 527.
[3] Vriezema D M, Comellas Aragonès M, Elemans J A A W, Cornelissen J J L M, Rowan A E, Nolte R J M. Chem. Rev., 2005, 105: 1445.
[4] Seeman N C. J. Theor. Biol., 1982, 99: 237.
[5] Seeman N C. Nature, 2003, 421: 427.
[6] 樊春海(Fan C H), 刘冬生(Liu D S). DNA纳米技术(DNA Nanotechnology). 北京: 科学出版社(Beijing: Science Press), 2011.
[7] 杨洋(Yang Y), 柳华杰(Liu H J), 刘冬生(Liu D S). 化学进展(Progress in Chemistry), 2008, 20: 197.
[8] Rothemund P W K. Nature, 2006, 440: 297.
[9] 钱璐璐(Qian L L), 汪颖(Wang Y), 张钊(Zhang Z), 赵健(Zhao J), 潘敦(Pan D), 张益(Zhang Y), 刘强(Liu Q), 樊春海(Fan C H), 胡钧(Hu J), 贺林(He L). 科学通报(Chinese Science Bulletin), 2006, 51: 2973.
[10] Andersen E S, Dong M, Nielsen M M, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf K V, Besenbacher F, Kjems J. ACS Nano, 2008, 2: 1213.
[11] Andersen E S, Dong M, Nielsen M M, Jahn K, Subramani R, Mamdouh W, Golas M M, Sander B, Stark H, Oliveira C L P, Pedersen J S, Birkedal V, Besenbacher F, Gothelf K V, Kjems J. Nature, 2009, 459: 73.
[12] Douglas S M, Dietz H, Liedl T, Hogberg B, Graf F, Shih W M. Nature, 2009, 459: 414.
[13] Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H. Science, 2011, 332: 342.
[14] Said H, Schuller V J, Eber F J, Wege C, Liedl T, Richert C. Nanoscale, 2013, 5: 284.
[15] Zhang H, Chao J, Pan D, Liu H, Huang Q, Fan C. Chem. Commun., 2012, 48: 6405.
[16] Liu W, Zhong H, Wang R, Seeman N C. Angew. Chem. Int. Ed., 2011, 50: 264.
[17] Zhao Z, Liu Y, Yan H. Nano Lett., 2011, 11: 2997.
[18] Fu Y, Chao J, Liu H, Fan C. Chin. Sci. Bull., 2013, 58: 2646.
[19] Torring T, Voigt N V, Nangreave J, Yan H, Gothelf K V. Chem. Soc. Rev., 2011, 40: 5636.
[20] 王金业(Wang J Y), 宋晨(Song C), 徐景坤(Xu J K), 丁宝全(Ding B Q). 化学进展(Progress in Chemistry), 2012, 10: 1936.
[21] Kanan M W, Rozenman M M, Sakurai K, Snyder T M, Liu D R. Nature, 2004, 431: 545.
[22] Gothelf K V, Thomsen A, Nielsen M, Cló E, Brown R S. J. Am. Chem. Soc., 2004, 126: 1044.
[23] Xiao Y, Kharitonov A B, Patolsky F, Weizmann Y, Willner I. Chem. Commun., 2003, 1540.
[24] Hansen M H, Blakskjr P, Petersen L K, Hansen T H, Højfeldt J W, Gothelf K V, Hansen N J V. J. Am. Chem. Soc., 2009, 131: 1322.
[25] Steinhauer C, Jungmann R, Sobey T L, Simmel F C, Tinnefeld P. Angew. Chem. Int. Ed., 2009, 48: 8870.
[26] Schmied J J, Forthmann C, Pibiri E, Lalkens B, Nickels P, Liedl T, Tinnefeld P. Nano Lett., 2013, 13: 781.
[27] Stein I H, Steinhauer C, Tinnefeld P. J. Am. Chem. Soc., 2011, 133: 4193.
[28] Dutta P K, Varghese R, Nangreave J, Lin S, Yan H, Liu Y. J. Am. Chem. Soc., 2011, 133: 11985.
[29] Lin C, Jungmann R, Leifer A M, Li C, Levner D, Church G M, Shih W M, Yin P. Nat. Chem., 2012, 4: 832.
[30] Wu N, Czajkowsky D M, Zhang J, Qu J, Ye M, Zeng D, Zhou X, Hu J, Shao Z, Li B, Fan C. J. Am. Chem. Soc., 2013, 135: 12172.
[31] Kuzyk A, Kimmo T L, Pivi T. Nanotechnology, 2009, 20: 235305.
[32] Kuzuya A, Kimura M, Numajiri K, Koshi N, Ohnishi T, Okada F, Komiyama M. ChemBioChem, 2009, 10: 1811.
[33] Saccà B, Meyer R, Erkelenz M, Kiko K, Arndt A, Schroeder H, Rabe K S, Niemeyer C M. Angew. Chem. Int. Ed., 2010, 49: 9378.
[34] Shen W, Zhong H, Neff D, Norton M L. J. Am. Chem. Soc., 2009, 131: 6660.
[35] Nakata E, Liew F F, Uwatoko C, Kiyonaka S, Mori Y, Katsuda Y, Endo M, Sugiyama H, Morii T. Angew. Chem. Int. Ed., 2012, 51: 2421.
[36] Stearns L A, Chhabra R, Sharma J, Liu Y, Petuskey W T, Yan H, Chaput J C. Angew. Chem. Int. Ed., 2009, 48: 8494.
[37] Stephanopoulos N, Liu M, Tong G J, Li Z, Liu Y, Yan H, Francis M B. Nano Lett., 2010, 10: 2714.
[38] Jahn K, Tørring T, Voigt N V, Sørensen R S, Kodal A L B, Andersen E S, Gothelf K V, Kjems J. Bioconjugate. Chem., 2011, 22: 819.
[39] Sørensen R S, Okholm A H, Schaffert D, Kodal A L B, Gothelf K V, Kjems J. ACS Nano, 2013, 7: 8098.
[40] Luk'yanchuk B, Zheludev N I, Maier S A, Halas N J, Nordlander P, Giessen H, Chong C T. Nat. Mater., 2010, 9: 707.
[41] Mayer K M, Hafner J H. Chem. Rev., 2011, 111: 3828.
[42] Sharma J, Chhabra R, Andersen C S, Gothelf K V, Yan H, Liu Y. J. Am. Chem. Soc., 2008, 130: 7820.
[43] Ding B, Deng Z, Yan H, Cabrini S, Zuckermann R N, Bokor J. J. Am. Chem. Soc., 2010, 132: 3248.
[44] Pal S, Deng Z, Ding B, Yan H, LiuY. Angew. Chem. Int. Ed., 2010, 49: 2700.
[45] Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H. J. Am. Chem. Soc., 2011, 133: 17606.
[46] Chen Z, Lan X, Wang Q. Small, 2013, 9: 3567.
[47] Pal S, Dutta P, Wang H, Deng Z, Zou S, Yan H, Liu Y. J. Phys. Chem. C, 2013, 117: 12735.
[48] Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E M, Hogele A, Simmel F C, Govorov A O, Liedl T. Nature, 2012, 483: 311.
[49] Shen X, Song C, Wang J, Shi D, Wang Z, Liu N, Ding B. J. Am. Chem. Soc., 2011, 134: 146.
[50] Shen X, Asenjo-Garcia A, Liu Q, Jiang Q, García de Abajo F J, Liu N, Ding B. Nano Lett., 2013, 13: 2128.
[51] Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q. J. Am. Chem. Soc., 2013, 135: 11441.
[52] Acuna G P, Möller F M, Holzmeister P, Beater S, Lalkens B, Tinnefeld P. Science, 2012, 338: 506.
[53] Klein W P, Schmidt C N, Rapp B, Takabayashi S, Knowlton W B, Lee J, Yurke B, Hughes W L, Graugnard E, Kuang W. Nano Lett., 2013, 13: 3850.
[54] Bui H, Onodera C, Kidwell C, Tan Y, Graugnard E, Kuang W, Lee J, Knowlton W B, Yurke B, Hughes W L. Nano Lett., 2010, 10: 3367.
[55] Wang R, Nuckolls C, Wind S J. Angew. Chem. Int. Ed., 2012, 51: 11325.
[56] Maune H T, Han S P, Barish R D, Bockrath M, Goddard I I A, Rothemund P W K, Winfree E. Nat. Nanotechnol., 2010, 5: 61.
[57] Voigt N V, Torring T, Rotaru A, Jacobsen M F, Ravnsbaek J B, Subramani R, Mamdouh W, Kjems J, Mokhir A, Besenbacher F, Gothelf K V. Nat. Nanotechnol., 2010, 5: 200.
[58] Helmig S, Rotaru A, Arian D, Kovbasyuk L, Arnbjerg J, Ogilby P R, Kjems J, Mokhir A, Besenbacher F, Gothelf K V. ACS Nano, 2010, 4: 7475.
[59] Keller A, Bald I, Rotaru A, Caut E, Gothelf K V, Besenbacher F. ACS Nano, 2012, 6: 4392.
[60] Busuttil K, Rotaru A, Dong M, Besenbacher F, Gothelf K V. Chem. Commun., 2013, 49: 1927.
[61] Liu H, Tørring T, Dong M, Rosen C B, Besenbacher F, Gothelf K V. J. Am. Chem. Soc., 2010, 132: 18054.
[62] Lopez-Gallego F, Schmidt-Dannert C. Curr. Opin. Chem. Biol., 2010, 14: 174.
[63] Müller J, Niemeyer C M. Biochem. Biophys. Res. Commun., 2008, 377: 62.
[64] Wilner O I, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I. Nat. Nanotechnol., 2009, 4: 249.
[65] Liu Y, Du J, Yan M, Lau M Y, Hu J, Han H, Yang O O, Liang S, Wei W, Wang H, Li J, Zhu X, Shi L, Chen W, Ji C, Lu Y. Nat. Nanotechnol., 2013, 8: 187.
[66] Xin L, Zhou C, Yang Z, Liu D. Small, 2013, 9: 3088.
[67] Ke Y, Nangreave J, Yan H, Lindsay S, Liu Y. Chem. Commun., 2008, 5622.
[68] Ke Y, Lindsay S, Chang Y, Liu Y, Yan H. Science, 2008, 319: 180.
[69] Zhang Z, Wang Y, Fan C, Li C, Li Y, Qian L, Fu Y, Shi Y, Hu J, He L. Adv. Mater., 2010, 22: 2672.
[70] Rinker S, Ke Y, Liu Y, Chhabra R, Yan H. Nat. Nanotechnol., 2008, 3: 418.
[71] Lee H, DeLoache W C, Dueber J E. MeTab. Eng., 2012, 14: 242.
[72] Fu J, Liu M, Liu Y, Woodbury N W, Yan H. J. Am. Chem. Soc., 2012, 134: 5516.
[73] Fu Y, Zeng D, Chao J, Jin Y, Zhang Z, Liu H, Li D, Ma H, Huang Q, Gothelf K V, Fan C. J. Am. Chem. Soc., 2012, 135: 696.
[74] Pinheiro A V, Han D, Shih W M, Yan H. Nat. Nanotechnol., 2011, 6: 763.
[75] Chen A H, Silver P A. Trends Cell Biol., 2012, 22: 662.
[76] Li Z, Cheng E, Huang W, Zhang T, Yang Z, Liu D, Tang Z. J. Am. Chem. Soc., 2011, 133: 15284.
[77] Abe S, Niemeyer J, Abe M, Takezawa Y, Ueno T, Hikage T, Erker G, Watanabe Y. J. Am. Chem. Soc., 2008, 130: 10512.
[78] Abe S, Hirata K, Ueno T, Morino K, Shimizu N, Yamamoto M, Takata M, Yashima E, Watanabe Y. J. Am. Chem. Soc., 2009, 131: 6958.
[79] Arsuaga J, Vázquez M, Trigueros S, Sumners D W, Roca J. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 5373.
[80] He Q, Cui Y, Li J. Chem. Soc. Rev., 2009, 38: 2292.
[81] Yan X, Zhu P, Li J. Chem. Soc. Rev., 2010, 39: 1877.
[82] Zhang F, Pan X, Hu Y, Yu L, Chen X, Jiang P, Zhang H, Deng S, Zhang J, Bolin T B, Zhang S, Huang Y, Bao X. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 14861.
[83] Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat. Mater., 2007, 6: 507.
[84] Endo M, Katsuda Y, Hidaka K, Sugiyama H. J. Am. Chem. Soc., 2010, 132: 1592.
[85] Rajendran A, Endo M, Hidaka K, Sugiyama H. J. Am. Chem. Soc., 2012, 135: 1117.
[86] Novo C, Funston A M, Mulvaney P. Nat. Nanotechnol., 2008, 3: 598.
[87] Zhou X, Andoy N M, Liu G, Choudhary E, Han K S, Shen H, Chen P. Nat. Nanotechnol., 2012, 7: 237.
[88] Boersma A J, Megens R P, Feringa B L, Roelfes G. Chem. Soc. Rev., 2010, 39: 2083.
[89] He Y, Liu D R. Nat. Nanotechnol., 2010, 5: 778.
[90] Gu H, Chao J, Xiao S J, Seeman N C. Nature, 2010, 465: 202.
[91] Lund K, Manzo A J, Dabby N, Michelotti N, Johnson-Buck A, Nangreave J, Taylor S, Pei R, Stojanovic M N, Walter N G, Winfree E, Yan H. Nature, 2010, 465: 206.
[92] Wickham S F J, Endo M, Katsuda Y, Hidaka K, Bath J, Sugiyama H, Turberfield A J. Nat. Nanotechnol., 2011, 6: 166.
[93] Pearson A C, Liu J, Pound E, Uprety B, Woolley A T, Davis R C, Harb J N. J. Phys. Chem. B, 2012, 116: 10551.
[94] Liu J, Geng Y, Pound E, Gyawal S, Ashton J R, Hickey J, Woolley A T, Harb J N. ACS Nano, 2011, 5: 2240.
[95] Chen Q, Liu H, Lee W, Sun Y, Zhu D, Pei H, Fan C, Fan X. Lab Chip, 2013, 13: 3351.
[96] Wickham S F J, Bath J, Katsuda Y, Endo M, Hidaka K, Sugiyama H, Turberfield A J. Nat. Nanotechnol., 2012, 7: 169.

[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Gong Wanjun, Zhao Zhiyong, Liu Simin*. Cucurbituril-Based Supramolecular Nanoreactors/Catalysts [J]. Progress in Chemistry, 2016, 28(12): 1732-1742.
[3] Wang Jinye, Song Chen, Xu Jingkun, Ding Baoquan. Organizing Functional Nanomaterials with DNA Origami [J]. Progress in Chemistry, 2012, (10): 1936-1945.
Viewed
Full text


Abstract

DNA Origami Nanoreactors