中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (11): 1824-1834 DOI: 10.7536/PC200568 Previous Articles   Next Articles

• Review •

Chelation-Assisted C—H/C—H Oxidative Cross-Coupling/Cyclization for the Construction of Fused(Hetero)aromatics

Yudong Yang1, Jingsong You1,*()   

  1. 1. Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
  • Received: Revised: Online: Published:
  • Contact: Jingsong You
  • Supported by:
    the National Natural Science Foundation of China(21432005)
Richhtml ( 14 ) PDF ( 833 ) Cited
Export

EndNote

Ris

BibTeX

The synthesis of fused heteroaromatics is an important research area in organic chemistry and it has significant implications on the investigations of organic optoelectronic materials and devices. C—H bond is one of the most ubiquitous chemical bonds in organic compounds. The direct construction of fused heteroaromatics via the C—H bond cleavage and direct functionalization features concision and high efficiency, which could solve the limitations on the substrate preparation and product structural diversity in conventional synthetic methods. In this account, we review our works on the construction of fused heteroaromatics based on chelation-assisted transition metal-catalyzed oxidative C—H/C—H cross-coupling between(hetero)arenes/intramolecular cyclization during the past six years, including a comprehensive discussion of the features, advantages and reaction mechanisms of these reactions, and the applications of these strategies in the exploration of novel organic optoelectronic materials. Finally, the existing problems and development prospect of this area are elaborated.

Contents

1 Introduction

2 Construction of ladder-type fused heteroaromatic frameworks

2.1 Construction of pyrrole-fused ladder-type heteroaromatic frameworks

2.2 Construction of furan-fused ladder-type heteroaromatic frameworks

3 Construction of fused benzo[de]thiochromenes

4 Construction of fluorenone- and coumarin-type frameworks

5 Construction of(hetero)aryl-fused sultams and thiophene 5,5-dioxides

6 Construction of phenanthridine- and phenanthrone-type frameworks

6.1 Construction of phenanthridine-type frameworks

6.2 Construction of phenanthrone-type frameworks

7 Construction of cationic fused heteroaromatic frameworks

8 Conclusion and outlook

Scheme 1 Construction of Fused(hetero)aromatics via chelation-assisted oxidative C—H/C—H cross-coupling between(hetero)arenes/cyclization
Scheme 2 Rhodium(Ⅰ)-catalyzed oxidative cross-coupling reactions between aromatic amines and heteroarenes[10]
Scheme 3 The synthesis of pyrrole-fused ladder-type S,N-heteropentacene 1[10]
Scheme 4 Rhodium(Ⅲ)-catalyzed oxidative cross-coupling reactions between phenols and heteroarenes[11]
Scheme 5 (a)The synthesis of unsymmetric 2,6-diheteroaryl phenol and(b)furan-fused ladder-type S,O-heteropentacenes[11]
Scheme 6 Rhodium(Ⅲ)-catalyzed peri-selective heteroarylation of 1-(methylthio)naphthalenes[15]
Scheme 7 (a)Stepwise and(b)one-pot synthesis of benzothiophene-fused benzo[de]thioacenes[15]
Scheme 8 Proposed mechanism for Ag-mediated intramolecular cyclization of biheteroaryl sulfide[15]
Scheme 9 Rh(Ⅲ)-catalyzed oxidative cross-coupling reactions between(hetero)aromatic carboxylic acids and heteroarenes[19]
Scheme 10 Pd(Ⅱ)-catalyzed intramolecular oxidative C—H/C—H lactonization[19]
Scheme 11 The construction of fluorenones[19]
Scheme 12 The construction of fluorene-based ladder-type heteroheptacene[19]
Scheme 13 The synthesis of sensitizer for organic solar cell[19]
Scheme 14 Cascade Pd(Ⅱ)-catalyzed oxidative C—H/C—H cross-coupling of aromatic carboxylic acids with simple arenes/intramolecular Friedel-Crafts acylation[20]
Scheme 15 The synthesis of fluorenone-based organic luminescent molecule[20]
Scheme 16 Ir(Ⅲ)-catalyzed one-pot oxidative annulation reactions of thiophenes with(hetero)aromatic carboxylic acids or α,β-unsaturated carboxylic acids[21]
Scheme 17 Ir(Ⅲ)-catalyzed oxidative cross-coupling reactions between phenylglyoxylic acids with benzo[b]thiophenes/cyclization cascade reaction[22]
Scheme 18 RhCl3-Catalyzed oxidative C—H/C—H cross-coupling of(hetero)aromatic sulfonamides with(hetero)arenes[25]
Scheme 19 The synthesis of(a)benzosultam and(b)dibenzo[b,d]thiophene 5,5-dioxide derivatives[25]
Scheme 20 Ir(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling of(hetero)aromatic aldoxime ethers with electron-rich heteroarenes/cyclization cascade reaction[29]
Scheme 21 Proposed mechanism for Ir(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling of(hetero)aromatic aldoxime ethers with heteroarenes/cyclization cascade reaction[29]
Scheme 22 Transient directing ligand-assisted Rh(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling between benzaldehydes and electron-rich heteroarenes[30]
Scheme 23 Construction of fluorenone-type polycyclic structures[30]
Scheme 24 Transient directing ligand-assisted oxidative C—H/C—H cross-coupling/quaternization cyclization/dequaternization cascade reaction[30]
Scheme 25 Proposed mechanism for Rh(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling between benzaldehydes and electron-rich heteroarenes/quaternization cyclization/dequaternization cascade reaction[30]
Scheme 26 Rh(Ⅲ)-catalyzed oxidative C—H/C—H cross-coupling between indolyl ketones and electron-rich heteroarenes/Cu(Ⅱ)-promoted intramolecular cyclization cascade reaction[32]
Scheme 27 Rh(Ⅲ)-catalyzed 2-fold C—H/C—H oxidative cross-coupling reaction of N-(hetero)arylimidazolium salts with(hetero)arenes[34]
Scheme 28 Proposed mechanism for Rh(Ⅲ)-catalyzed 2-fold C—H/C—H oxidative cross-coupling reaction of N-(hetero)arylimidazolium salts with(hetero)arenes[34]
[1]
Katritzky A, R , Ramsden C A, Scriven E F V, Taylor R J K. Comprehensive Heterocyclic Chemistry Ⅲ. Elsevier, 2008.
[2]
Wang, C, Dong, H, Hu, W, Liu, Y , Zhu D. Chem. Rev., 2012,112: 2208.
[3]
Tsuji, H , Nakamura E. Acc. Chem. Res., 2017,50: 396.
[4]
Li, Z, Zhao, X, Li, X, Gao, Z, Mi, B , Huang, W. Sci. China Chem., 2012,55: 553.
[5]
Hirai, M, Tanaka, N, Sakai, M , Yamaguchi S. Chem. Rev., 2019,119: 8291.
[6]
Parke S, M, Boone M, P , Rivard E. Chem. Commun., 2016,52: 9485.
[7]
Yang, Y, Lan, J , You J. Chem. Rev., 2017,117: 8787.
[8]
Liu, C, Yuan, J, Gao, M, Tang, S, Li, W, Shi, R , Lei A. Chem. Rev., 2015,115: 12138.
[9]
Cai, Z, Awais M, A, Zhang, N , Yu L. Chem., 2018,4: 2538.
[10]
Huang, Y, Wu, D, Huang, J, Guo, Q, Li, J , You J. Angew. Chem. Int. Ed., 2014,53: 12158.
[11]
Wu, Y, Li, W, Jiang, L, Zhang, L, Lan, J , You J. Chem. Sci., 2018,9: 6878.
[12]
Li, B, Lan, J, Wu, D , You J. Angew. Chem. Int. Ed., 2015,54: 14008.
[13]
Wu, Q, Chen, Y, Yan, D, Zhang, M, Lu, Y, Sun W, Y , Zhao J. Chem. Sci., 2017,8: 169.
[14]
Takimiya, K, Shinamura, S, Osaka, I , Miyazaki E. Adv. Mater., 2011,23: 4347.
[15]
Yang, S, Cheng, R, Zhang, M, Bin, Z , You J. ACS Catal., 2019,9: 6188.
[16]
Lu, L, Zheng, T, Wu, Q, Schneider A, M, Zhao, D , Yu L. Chem. Rev., 2015,115: 12666.
[17]
Wei, Y, Hu, P, Zhang, M , Su W. Chem. Rev., 2017,117: 8864.
[18]
Qin, X, Sun, D, You, Q, Cheng, Y, Lan, J , You J. Org. Lett., 2015,17: 1762.
[19]
Qin, X, Li, X, Huang, Q, Liu, H, Wu, D, Guo, Q, Lan, J, Wang, R , You J. Angew. Chem. Int. Ed., 2015,54: 7167.
[20]
Sun, D, Li, B, Lan, J, Huang, Q , You J. Chem. Commun., 2016,52, 3635.
[21]
Tan, G, You, Q, Lan, J , You J. Angew. Chem. Int. Ed., 2018,57: 6309.
[22]
Wang, Z, Yang, M , Yang Y. Org. Lett., 2018,20: 3001.
[23]
Melkonyan F, S, Zhao, W, Drees, M, Eastham N, D, Leonardi M, J, Butler M, R, Chen, Z, Yu, X, Chang R P, H, Ratner M, A, Facchetti A, F , Marks T J. J. Am. Chem. Soc., 2016,138: 6944.
[24]
Dias F, B, Santos, J, Graves D, R, Data, P, Nobuyasu R, S, Fox M, A, Batsanov A, S, Palmeira, T, Berberan-Santos M, N, Bryce M, R , Monkman A P. Adv. Sci., 2016,3: 1600080.
[25]
Ran, Y, Yang, Y, You, H , You J. ACS Catal., 2018,8: 1796.
[26]
Ramalingam B, M, Moorthy N, D, Chowdhury S, R, Mageshwaran, T, Vellaichamy, E, Saha, S, Ganesan, K, Rajesh B, N, Iqbal, S, Majumder H, K, Gunasekaran, K, Siva, R , Mohanakrishnan A K. J. Med. Chem., 2018,61: 1285.
[27]
Czapar A, E, Zheng Y, R, Riddell I, A, Shukla, S, Awuah S, G, Lippard S, J , Steinmetz N F. ACS Nano, 2016,10: 4119.
[28]
Qin, D, Wang, J, Qin, X, Wang, C, Gao, G , You J. Chem. Commun., 2015,51: 6190.
[29]
Yu, Z, Zhang, Y, Tang, J, Zhang, L, Liu, Q, Li, Q, Gao, G , You J. ACS Catal., 2020,10: 203.
[30]
Sun, D, Du, J, Fang, H, Lan, J, Wu, D , You J. Chem. Commun., 2019,55: 7518.
[31]
Zhu, M , Yang C. Chem. Soc. Rev., 2013,42: 4963.
[32]
Pu, X, Zhang, M, Lan, J, Chen, S, Liu, Z, Liang, W, Yang, Y, Zhang, M , You J. Org. Lett., 2019,21: 1139.
[33]
Parenty A D, C, Guthrie K, M, Song Y, F, Smith L, V, Burkholder, E , Cronin L. Chem. Commun., 2006,1194.
[34]
She, Z, Wang, Y, Wang, D, Zhao, Y, Wang, T, Zheng, X, Yu Z, X, Gao, G , You J. J. Am. Chem. Soc., 2018,140: 12566.
[1] Hua Guo, Lei Zhang, Xu Dong, Gangyi Shen, Junfa Yin. Immobilized Multi-Enzyme Cascade Reactor [J]. Progress in Chemistry, 2020, 32(4): 392-405.
[2] Li Luyao, Xu Xinyao, Zhu Bo, Xu Xinyao. Application of Pyrazolone Compounds in Catalytic Asymmetric Reactions [J]. Progress in Chemistry, 2020, 32(11): 1710-1728.
[3] Chenghao Zhu, Junliang Zhang. Palladium Catalyzed Heck-Type Reaction of Organic Halides and Alkyl-Alkynes [J]. Progress in Chemistry, 2020, 32(11): 1745-1752.
[4] Jia Sisi, Chao Jie, Fan Chunhai, Liu Huajie. DNA Origami Nanoreactors [J]. Progress in Chemistry, 2014, 26(05): 695-705.
[5] Cao Jinzhu, Wang Zhixiang, Chen Runfeng, Li Huanhuan, Zheng Chao, Huang Wei. Synthesis and Applications of 1,8-Functionalized Heterofluorenes for Organic Electronics [J]. Progress in Chemistry, 2013, 25(08): 1350-1361.
[6] Weng Jianquan, Yu Zhiqin, Zhang Guofu. Direct Oxidative Coupling Between Unfunctionalized Arene and Olefin [J]. Progress in Chemistry, 2012, 24(04): 523-544.