中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (9): 1274-1293 DOI: 10.7536/PC200118 Previous Articles   Next Articles

• Review •

Research and Application of Supported Ionic Liquids

Meirong Kang1, Fuxiang Jin1, Zhen Li1, Heyuan Song1,**(), Jing Chen1,**()   

  1. 1. State Key Laboratory of Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • Received: Revised: Online: Published:
  • Contact: Heyuan Song, Jing Chen
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21673259); the National Science Foundation of Jiangsu Province of China(BK20171241)
Richhtml ( 51 ) PDF ( 2014 ) Cited
Export

EndNote

Ris

BibTeX

Supported ionic liquid is a new kind of solid materials prepared by loading ionic liquids onto different carriers through physical adsorption or chemical bonding, which has the characteristics of both ionic liquids and carriers. This process can significantly improve the utilization of ionic liquids, solve the problems of high viscosity, mass transfer and separation of ionic liquids, and expand the application field of ionic liquids. This paper reviews the research progress and application of supported ionic liquids in recent years, summarizes the advantages and disadvantages of different carriers and some problems existing in the current application. Furthermore, the prospect to the development and application of supported ionic liquids is also discussed.

Contents

1 Introduction

2 Immobilization of ionic liquids

2.1 Methods of immobilization

2.2 Immobilization of ionic liquids onto silica gel

2.3 Immobilization of ionic liquids onto polymer

2.4 Immobilization of ionic liquids onto molecular sieve

2.5 Immobilization of ionic liquids onto magnetic materials

2.6 Immobilization of ionic liquids onto metal-organic frameworks

2.7 Immobilization of ionic liquids onto other carriers

3 Conclusion and outlook

Fig.1 Structure of S-[bpim][HCO3] [11]
Fig.2 Preparation diagram of [(CH2)3SO3HVIm]HSO4/SiO2[12]
Fig.3 Structural of supported ionic liquids[16]
Fig.4 Structural of immobilized ionic liquid IL-Ala/SiO2[17]
Fig.5 Preparation diagram of [Pmim]AlCl3/SiO2[19]
Fig.6 Synthetic route of [Silica-Ps-im]HSO4[23]
Fig.7 Structure of KCC-1/IL/PbS[24]
Fig.8 Synthetic route of immobilized ionic liquids[26]
Fig.9 Structure of Si-P8883TFSI/Si2[27]
Fig.10 Structure of immobilized ionic liquids[29]
Fig.11 Structure of MPM-C6V-SO3CF3-IL[33]
Fig.12 Synthetic route of P(4-VPBSA)[HSO4] [34]
Fig.13 Synthetic route of CS-VImPS-PW[37]
Fig.14 Structure of PEK-C-ILs[38]
Fig.15 Structure of MMFP-IL[39]
Fig.16 Synthetic route of PVC immobilized ionic liquid[40]
Fig.17 Preparation of supported alkylimidazolium ionic liquids[41]
Fig.18 Structure of PS-CH2-[TSiIm][Cl][42]
Fig.19 Structure of Resin-X[44]
Fig.20 Structure of [PolyVMPS]PW[47]
Fig.21 Synthetic route of Poly(VPyPS)-PW[51]
Fig.22 Synthetic route of PAILs[54]
Fig.23 Structure of polymeric ionic liquids[55]
Fig.24 Structure of polymerizable ionic liquids and polymeric ionic liquids[57]
Fig.25 Structure of poly(AMPS-BA-co-HEMA) and poly(AMPS-DMAEMA-co-HEMA) [59]
Fig.26 Synthetic process of NO3@PIL and N3@PIL[60]
Fig.27 Synthetic process of HIILsBr/MCM-41[64]
Fig.28 Structure of MCM-22-[CeMIM]Cl/(ZnBr2)2[65]
Fig.29 Structure of [MCM-41@(CH2)3-1-MIM]Br3[69]
Fig.30 Structure of SBA-15-Pr-ILOH[74]、$[SBA-15-Ps-im]HSO_{4}$[75] and IL-PRO/SBA-15[76]
Fig.31 Structure of SBA-IL-HPW[78]
Fig.32 Synthetic process of supported ionic liquid[83]
Fig.33 Structure of [NaZSM-5IMBs]HSO4[84]
Fig.34 Structure of Fe3O4NPs/IL/Pd(0) [86]
Fig.35 Structure of Fe3O4@IL[90]
Fig.36 Structure of the supported ionic liquid[92]
Fig.37 Structure of anion-DMIL@SIO2@Fe3O4[95]
Fig.38 Structure of Fe3O4@SiO2-IL[97]
Fig.39 Structure of the MIL-101(Cr) supported ionic liquid[101]
Fig.40 Structure of the supported ionic liquid[106]
Fig.41 Synthetic route of the NpmimBF4-FDU[113]
Fig.42 Structure of Na+-MMT-[pmim]HSO4 and HT-IL[119]
Fig.43 Structure of PMO-IL-SH and Ni@IL-PMO[121]
Table 1 Synthesis of propylene carbonate by cycloaddition reaction of CO2 and propylene oxide
[1]
张锁江(Zhang S J), 徐春明(Xu C M), 吕兴梅(Lv X M), 周清(Zhou Q).离子液体与绿色化学(Ionic Liquid and Green Chemistry). 北京:科学出版社(Beijing: Science Press), 2009. 569.
[2]
杨本群(Yang B Q), 张庆华(Zhang Q H), 石峰(Shi F), 邓友全(Deng Y Q).化学反应工程与工艺(Chemical Reaction Engineering and Technology), 2013, 29(5): 430.
[3]
Xin B W, Hao J C.Chem. Soc. Rev., 2014, 43:7171.
[4]
刘文巧(Liu W Q), 李臻(Li Z), 夏春谷(Xia C G). 化学进展(Progress In Chemistry), 2018, 30(8): 1143.
[5]
段晓磊(Duan X L), 迟骋(Chi C), 朱丽君(Zhu L J), 周玉路(Zhou Y L), 项玉芝(Xiang Y Z), 夏道宏(Xia D H). 化工进展(Chemical Industry and Engineering Progress), 2015, 34(12): 4238.
[6]
赵地顺(Zhao D S), 杨洁(Yang J), 张娟(Zhang J), 董兰芬(Dong L F), 张妍(Zhang Y).化工进展(Chemical Industry and Engineering Progress), 2010, 29(11): 2079.
[7]
Tamboli A H,Chaugule A A,Sheikh F A,Chung W J,Kim H. Chinese J. Catal., 2015, 36(8): 1365.
[8]
杨刚胜(Yang G S), 曾淦宁(Zeng G N), 赵强(Zhao Q), 陈徐(Chen X), 陈盛积(Chen S J), 艾宁(Ai N). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2016, 44(1): 106.
[9]
王颖(Wang Y), 罗仕忠(Luo S Z), 文婕(WenJ), 周夫东(Zhou F D).合成化学(Chinese Journal of Synthetic Chemistry), 2012, 20(3): 276.
[10]
邱晓艳(Qiu X Y), 张丽珍(Zhang L Z), 钟小超(Zhong X C), 曾双(Zeng S), 杨骏(Yang J).化学研究与应用(Chemical Research and Application), 2015, 27(12): 1817.
[11]
王耀红(Wang Y H), 成卫国(Cheng W G), 孙剑(Sun J), 张香平(Zhang X P),张锁江(Zhang S J).过程工程学报(The Chinese Journal of Process Engineering), 2009, 9(5):904.
[12]
万辉(Wan H), 张继申(Zhang J S), 管国锋(Guan G F).石油化工(Petrochemical Technology), 2009, 38(2): 134.
[13]
张信伟(Zhang X W), 艾秋红(Ai Q H). 工业催化(Industrial Catalysis), 2008, 16(8): 54.
[14]
Fehér C, Tomasek S,Hancsòk J, Skoda -Földes R.Appl.Catal. B: Envirin.,2018, 239: 52.
[15]
Guo X P, Peng Z J, Traitangwong A, Wang G, Xu H Y, MeeyooV, Li C S, Zhang S J.Green Chem., 2018, 20(21): 4932.
[16]
高腾(Gao T), 宋河远(Song H Y), 陈静(Chen J). 分子催化(Journal of Molecular Catalysis), 2016, 30(3): 199.
[17]
唐斌艳(Tang B Y), 郭建平(Guo J P), 陈林(Chen L), 胡强(Hu Q), 毛丽秋(Mao L Q). 化工进展(Chemical Industry and Engineering Progress), 2011, 30(12): 2642.
[18]
郑国才(Zheng G C), 许杰(Xu J), 薛冰(Xue B), 刘平(Liu P), 李永昕(Li Y X). 化学通报(Chemistry), 2010, 75(8): 754.
[19]
张雪红(Zhang X H), 高岩磊(Gao Y L), 常永芳(Chang Y F), 张云霄(Zhang Y X),杨晓辉(Yang X H), 刘会茹(Liu H R), 任蕾(Ren L), 胡瑞省(Hu R S), 陈汝芬(Chen R F). 天然气化工(Natural Gas Chemical Industry), 2010, 38(1): 15.
[20]
张学兰(Zhang X L), 王登峰(Wang D F), 魏伟(Wei W). 工业催化(Industrial Catalysis), 2012, 20(7): 12.
[21]
唐婧亚(Tang J Y), 王华(Wang H), 韩金玉(Han J Y), 姚锐(Yao R).化学工业与工程(Chemical Industry and Engineering), 2015, 32(2): 18.
[22]
Xu H M, Zhao H H, Song H L, Miao Z C, Yang J, Zhao J, Liang N, Chou L J.J. Mol. Catal. A: Chem., 2015, 410: 235.
[23]
Yang J B, Zhou L H, Guo X T, Li L, Zhang P, Hong R Y, Qiu T. Chem. Eng. J., 2015, 280: 147.
[24]
Sadeghzadeh S M. Micropor. Mesopor. Mat., 2016, 234: 310.
[25]
Cao Y, Zhou H B, Li J.Renew. Sust. Energ. Rev., 2016, 58: 871.
[26]
胡甜甜(Hu T T), 赵地顺(Zhao D S), 胡晶晶(Hu J J), 张娟(Zhang J), 翟建华(Zhai J H). 精细化工(Fine Chemicals), 2016, 33(6): 648.
[27]
Zhu J M, He B T, Huang J H, Li C C, Ren T.Micropor. Mesopor. Mat., 2018, 260: 190.
[28]
Moravcová D, Planeta J, W. T. King A, K.Wiedmer S. J.Chromatogr. A, 2018, 1552: 53.
[29]
吕东伟(Lv D W), 肖林飞(Xiao L F), 苏丹(Su D), 刘丹(Liu D), 吴伟(Wu W).现代化工(Modern Chemical Industry), 2011, 31(1): 271.
[30]
Wang Y, Guan X, Chen F Y, Zhu S S, Ye Y S, Peng H Y, Zhou X P, Xie X L, Mai Y W.Catal. Sci. Technol., 2017, 7(18): 4173.
[31]
Liu Y, Cheng W G, Zhang Y Q, Sun J, Zhang S J.Green Chem., 2017, 19(9): 2184.
[32]
Shi X L, Lin H K, Li P Y, Zhang W Q.Chem. Cat. Chem., 2014, 6(10): 2947.
[33]
Gao H Y, Zhou Y M, Sheng X L, Zhao S, Zhang C, Fang J S, Wang B B.Appl. Catal. A: Gen., 2018, 552:138.
[34]
Kiasat A R, Mouradzadegun A, Saghanezhad S J.Chinese J.Catal., 2013, 34(10): 1861.
[35]
Ma M, Li H S, Yang W, Wu Q, Shi D X, Zhao Y, Feng C H, Jiao Q Z.Catal. Lett., 2017, 148(1): 134.
[36]
Dong B, Wang L Y, Zhao S, Ge R L, Song X D, Wang Y, Gao Y N.Chem. Commun., 2016, 52(44): 7082.
[37]
Zhang W H, Liu S S, Liu P, Xu J, Xue B, Wei X Y, Li Y X.RSC Adv., 2016, 6(47):41404.
[38]
Lu P, Cao Y, Wang X L.Appl. Sci., 2018, 8(5): 770.
[39]
Pan H, Li H, Zhang H, Wang A P, Yang S.Fuel, 2019, 239: 886.
[40]
陈旭伟(Chen X W), 刘宇佳(Liu Y J), 舒杨(Shu Y), 王建华(Wang J H). 中国科学化学(Scientia Sinica Chimica), 2010, 40(1): 63.
[41]
祝丽荔(Zhu L L), 张振江(Zhang Z J), 张玉环(Zhang Y H), 商鲁伟(Shang L W), 陈继(Chen J). 离子交换与吸附(Ion Exchange and Adsorption), 2014, 30(6): 551.
[42]
Cheng M, Song G F, Zhu G F, Shi D Y, Fan J. J. Appl. Polym.Sci., 2019, 47981.
[43]
Feng S C, Wu Y Y, Luo J Q, Wan Y H.J.Energ. Chem., 2019, 29: 31.
[44]
Dong Z, Zhao L.Cellulose, 2018, 25(4): 2205.
[45]
Dou H Z, Jiang B, Xu M, Zhou J H, Sun Y L, Zhang L H.Chem. Eng. Sci., 2019, 193: 27.
[46]
Xing C Y, Wang Y Y, Zhang C, Li L F, Li Y J, Li J Y.Ind. Eng. Chem. Res., 2015, 54(38): 9351.
[47]
Leng Y, Jiang P P, Wang J.Catal. Commun., 2012, 25: 41.
[48]
Liang X Z. Ind. Eng. Chem. Res., 2013, 52(21): 6894.
[49]
Liang X Z.Appl. Catal. A: Gen., 2013, 455: 206.
[50]
Liang X Z.Energy, 2013, 63: 103.
[51]
Wang J K, Zao Y X, Fu R G, Niu Y Y, Yue G R, Quan Z J, Wang X C, Pan Y.Ultrason. Sonochem., 2014, 21(1): 29.
[52]
Li W Y, Zong Y X, Wang J K, Niu Y Y.Chinese Chem. Lett., 2014, 25(4): 575.
[53]
Sheng X L, Gao H Y, Zhou Y M, Wang B B, Sha X.Appl. Organomet. Chem., 2019, 33(8): e4979.
[54]
Song H Y, Jin F X, Kang M R, Chen J.RSC Adv., 2019, 9: 40662.
[55]
Ran H Y, Wang J X, Abdeltawab A A, Chen X C, Yu G G, Yu Y H.J. Energ. Chem., 2017, 26(5): 909.
[56]
Nayebi R, Tarigh G D, Shemirani F.Sci Rep., 2019, 9(1): 11130.
[57]
Wu B R, Zhang Z W, Huang M H, Peng Y Y.RSC Adv., 2017, 7(9): 5394.
[58]
Hu X C, Muchakayala R, Song S H, Wang J W, Chen J J, Tan M.Int. J. Hydrogen Energ., 2018, 43(7): 3741.
[59]
Yang X J, Fang Y X, Li X M, Zhang K, Cui Y D, Zhang B N, Yin G Q.E-Polymers, 2014, 14(5): 335.
[60]
Farzin M, Nosratzadegan K, Azarnia J, Ferdosi M.Chem. Pap., 2015, 69(9): 1211.
[61]
付格红(Fu G H), 吕功煊(Lv G X), 马建泰(Ma J T). 分子催化(Journal of Molecular Catalysis), 2013, 27(3): 218.
[62]
黄亮亮(Huang L L), 陈立(Chen L). 科技导报(Cience & Technology Review), 2013, 31(26): 60.
[63]
倪邦庆(Ni B Q), 黄江磊(Huang J L), 张萍波(Zhang P B), 范明明(Fan M M). 无机化学学报(Chinese Journal of Inorganic Chemistry), 2015, 31(5): 961.
[64]
任俊毅(Ren J Y), 王少君(Wang S J), 成卫国(Cheng W G), 孙剑(Sun J), 张锁江(Zhang S J), 王荣刚(Wang R G). 化工学报(CIESC Journal), 2009, 60(6): 1471.
[65]
Guo L Y, Deng L L, Jin X C, Wu H, Yin L Z.Catal. Lett., 2017, 147(9): 2290.
[66]
Wang B, Zhang J, Zou X, Dong H G, Yao P J.Chem. Eng. J., 2015, 260: 172.
[67]
Li H X, Zhang T, Yuan S J, Tang S W.Chinese J. Chem. Eng., 2016, 24(12): 1703.
[68]
Li Y L, Zhang T, Tang S W.Adsorption, 2018, 24(2): 179.
[69]
Zolfigol M A, Sajjadifar S, Ghorbani-Choghamarani A, Tami F.Res. Chem. Intermediate, 2018, 44(11): 7093.
[70]
Tripathi A K, Verma Y L, Singh R K.J. Mater. Chem. A, 2015, 3(47): 23809.
[71]
Tripathi A K, Singh R K.J. Phys. D Appl. Phys., 2018, 51(7): 075301.
[72]
甄梦媛(Zhen M Y), 李卓剑(Li Z J), 徐琴琴(Xu Q Q), 詹华书(Zhan H S), 银建中(Yin J Z). 应用科技(Applied Science and Technology), 2019, 46(2): 98.
[73]
Yin J Z, Zhen M Y, Cai P, Zhou D, Li Z J, Zhu H Y, Xu Q Q.Mater. Res. Express, 2018, 5(6): 065060.
[74]
Xie W L, Hu L B, Yang X L.Ind. Eng. Chm. Res., 2015, 54(5): 1505.
[75]
Yang J B, Zeng T, Cai D R, Li L, Tang W L, Hong R Y, Qiu T.Asia. J. Chem. Eng., 2016, 11(6): 901.
[76]
沈家春(Shen J C), 郭建平(Guo J P), 孙艳美(Sun Y M), 唐斌艳(Tang B Y), 陈小花(Chen X H), 尹笃林(Yin D L). 催化学报(Chinese Journal of Catalysis), 2010, 31(7): 827.
[77]
He Y B, Zhang Q H, Zhan X L, Cheng D G, Chen F G.Catal. Today, 2016, 276: 112.
[78]
Malihan L B, Nisola G M, Mittal N, Lee S P, Seo J G, Kim H, Chung W J.RSC Adv., 2016, 6(40): 33901.
[79]
Li R Y, Song H Y, Wang G Q, Chen J.RSC Adv., 2018, 8(13): 7179.
[80]
Li R Y, Song H Y, Jin F X, Chen J. J. Mol. Catal., 2019, 33(2): 149.
[81]
李贞玉(Li Z Y), 唐存国(Tang C G), 胡爽(Hu S), 王成静(Wang C J). 环境工程学报(Chinese Journal of Environmental Engineering), 2014, 8(9): 3848.
[82]
郝翊彤(HaoY T), 颜文超(Yan W C), 李珂(Li K). 石油化工高等学校学报(Journal of Petrochemical Universities), 2013, 26(4): 27.
[83]
张朝峰(Zhang C F), 张海新(Zhang H X), 陈树伟(Chen S W), 李瑞丰(Li R F).燃料化学学报(Journal of Fuel Chemistry and Technology), 2014, 42(5): 609.
[84]
Song H Y, Li R Y, Jin F X, Li Z, Chen J.Molecular Catalysis, 2018, 455: 179.
[85]
Yuan H, Jiao Q Z, Zhang Y P, Zhang J, Wu Q, Zhao Y, Neerunjun S, Li H S.Catal. Lett., 2016, 146(5): 951.
[86]
Veisi H, Pirhayati M, Kakanejadifard A.Tetrahedron Lett., 2017, 58(45): 4269.
[87]
Azarifar D, Badalkhani O, Abbasi Y.Appl. Organomet. Chem., 2018, 32(1): e3949.
[88]
Shojaei R, Zahedifar M, Mohammadi P, Saidi K, Sheibani H.J.Mol. Struct., 2019, 1178: 401.
[89]
Aliyari E, Alvand M, Shemirani F.RSC Adv., 2016, 6(69): 64193.
[90]
Qian L W, Sun J X, Hou C, Yang J F, Li Y W, Lei D, Yang M X, Zhang S F.Talanta, 2017, 168: 174.
[91]
Sadeghzadeh S M, Daneshfar F.J. Mol. Liq., 2014, 199: 440.
[92]
Vessally E, Ghasemisarabbadeih M, Ekhteyari Z, Hosseinzadeh -Khanmiri R, Ghorbani-Kalhor E, Ejlalid L.RSC Adv., 2016, 6(108):106769.
[93]
Hosseini S H, Tavakolizadeh M, Zohreh N, Soleyman R.Appl Oragnomet. Chem., 2018, 32(1): e3953.
[94]
Ghorbani-Vaghei R, Mahmoodi J, Shahriari A, Maghbooli Y.Appl. Organomet. Chem., 2017, 31(12): e3816.
[95]
Hu Y L, Rong X.Catal. Lett., 2017, 147(6): 1453.
[96]
Nasrollahzadeh M, Issaabadi Z, Sajadi S M.RSC Adv., 2018, 8(49): 27631.
[97]
Xie W L, Zhang C.LWT-Food Sci. Technol., 2018, 93: 71.
[98]
Ghorbani-Choghamarani A, Seydyosefi Z, Tahmasbi B.Res. Chem. Intermediat., 2018, 44(11): 6591.
[99]
Xun S H, Jiang W, Guo T, He M Q, Ma R L, Zhang M, Zhu W S, Li H M.J.Colloid Interf. Sci., 2019, 534: 239.
[100]
Takashima Y, Yokoyama M, Horikoshi A, Sato Y, Tsuruoka T, Akamatsu K.New J. Chem., 2017, 41(23): 14409.
[101]
Bahadori M, Tangestaninejad S, Bertmer M, Moghadam M, Mirkhani V, Mohammadpoor.ACS Sustain. Chem. Eng., 2019, 7(4): 3962.
[102]
Abednatanzi S, Abbasi A, Masteri.Catal. Commun., 2017, 96: 6.
[103]
Chong S Y, Wang T T, Cheng L C, Lv H Y, Ji M.Langmuir, 2019, 35(2): 495.
[104]
Han M J, Li Y, Gu Z, Shi H L, Chen C, Wang Q, Wan H, Guan G F.Colloid. Surface. A, 2018, 553: 593.
[105]
Chen C, Wu Z W, Que Y G, Li B X, Guo Q R, Li Z, Wang L, Wan H, Guan G F.RSC Adv., 2016, 6(59): 54119.
[106]
Xie W L, Wan F.Fuel, 2018, 220: 248.
[107]
Kanj A B, Verma R, Liu M, Helfferich J, Wenzel W, Heinke L.Nano Lett., 2019, 19(3): 2114.
[108]
Xie W L, Wan F.Chem. Eng. J., 2019, 365: 40.
[109]
彭长宏(Peng C H), 程晓苏(Cheng X S), 曹金艳(Cao J Y), 陈带军(Chen D J). 中南大学学报(Journal of Central South University), 2010, 41(2): 416.
[110]
田晋平(Tian J P), 闻立静(Wen L J), 吕永康(Lv Y K), 李秉正(Li B Z), 马燕(Ma Y). 过程工程学报(The Chinese Journal of Process Engineering), 2012, 12(2): 223.
[111]
孙爱军(Sun A J), 张金龙(Zhang J L), 孟洪(Meng H), 李春喜(Li C X). 北京化工大学学报(Journal of Beijing University of Chemical Technology), 2009, 36(6): 22.
[112]
Losch P, Pascual A M, Boltz M, Ivanova S, Louis B, Montilla F, Odriozola J A.Comptes Rendus Chimie, 2015, 18(3): 324.
[113]
陈欣(Chen X), 曾海浪(Zheng H l), 胡强(Hu Q), 毛丽秋(Mao L Q), 郭建平(Guo J P). 应用化学(Chinese Journal of Applied Chemistry), 2014, 31(9): 1069.
[114]
Garkoti C, Shabir J, Gupta P, Sharma M, Mozumdar S.New J. Chem., 2017, 41(24): 15545.
[115]
Zhu J, Wang S Q, Gu Y K, Xue B, Li Y X.Mater. Chem. Phys., 2018, 208: 68.
[116]
屈浩楠(Qu H N), 暴冲(Bao C), 马一鸣(Ma Y M), 李莉(Li L), 赵鹏(Zhao P), 郭美霞(Guo M X), 周艳梅(Zhou Y M). 化学研究(Chemical Research), 2018, 29(5): 500.
[117]
Shirini F, Seddighi M, Mzaloumi M, Makhsous M, Abedini M.J.Mol. Liq., 2015, 208: 291.
[118]
Zhou Y J, Liu J J, Xiao M, Meng Y Z, Sun L Y.ACS Appl. Mater. Inter., 2016, 8(8): 5547.
[119]
Finn M, An N, Voutchkova-Kostal A.RSC Adv., 2015, 5(17): 13016.
[120]
Elhamifar D, Shojaeipoor F, Yari O.RSC Adv., 2016, 6(63): 58658.
[121]
Elhamifar D, Khanmohammadi H, Elhamifar D.RSC Adv., 2017, 7(86): 54789.
[122]
杨旗(Yang Q), 胡辉(Hu H), 夏琪(Xia Q), 李芳(Li F), 操火锋(Cao H F). 应用化工(Applied Chemical Industry), 2016, 45(1): 1.
[123]
Azimzadeh H, Akbari A,Chem. Eng. J., 2017, 320: 189.
[124]
Xu Y Q, Jiang Y S, Xu H, Wang Q T, Huang W M, He H H, Zhai Y Y, Di S X, Guo L L, Xu X L, Zhao J, Feng F, Zhang Q F, Li X N.Appl. Catal. A: Gen., 2018, 567: 12.
[1] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[2] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[3] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[4] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Xiaofeng Chen, Kaiyuan Wang, Fangming Liang, Ruiqi Jiang, Jin Sun. Exosomes Drug Delivery Systems and Their Application in Tumor Treatment [J]. Progress in Chemistry, 2022, 34(4): 773-786.
[8] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[9] Yuanju Jing, Chun Kang, Yanxin Lin, Jie Gao, Xinbo Wang. MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis [J]. Progress in Chemistry, 2022, 34(11): 2373-2385.
[10] Lujie Song, Youping Wu, Jianping Deng. Enantioselective Release of Chiral Drugs [J]. Progress in Chemistry, 2021, 33(9): 1550-1559.
[11] Jinzhao Li, Zheng Li, Xupin Zhuang, Jixian Gong, Qiujin Li, Jianfei Zhang. Preparation of Cellulose Nanocrystallines and Their Applications in CompositeMaterials [J]. Progress in Chemistry, 2021, 33(8): 1293-1310.
[12] Chao Li, Yaoyu Qiao, Yuhong Li, Jing Wen, Naipu He, Baiyu Li. Preparation and Application of MOFs/ Hydrogel Composites [J]. Progress in Chemistry, 2021, 33(11): 1964-1971.
[13] Qiangqiang Yang, Chuan Li, Shuxian Yu, Shuhua Fan, Yuexia Wang, Min Hong. Application of Nanocarriers in Co-Loading siRNA and Chemotherapeutic Drugs to Reverse Multidrug Resistance of Tumor [J]. Progress in Chemistry, 2021, 33(10): 1900-1916.
[14] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[15] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.