中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (8): 1086-1099 DOI: 10.7536/PC200430 Previous Articles   Next Articles

• Review •

Biomineralization: A Condensed Matter Chemistry

Libo Mao1†, Huailing Gao1†, Yufeng Meng2, Yulu Yang1, Xiangsen Meng1, Shuhong Yu1,2,**()   

  1. 1. Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
    2. School of Chemistry and Materials Science, Institute of Biomimetic Materials & Chemistry, University of Science and Technology of China, Hefei 230026, China
  • Received: Revised: Online: Published:
  • Contact: Shuhong Yu
  • About author:
    ** e-mail:
  • Supported by:
    the National Natural Science Foundation of China(51732011); the National Natural Science Foundation of China(21431006); the National Natural Science Foundation of China(21761132008); the National Natural Science Foundation of China(21701161); Natural Science Foundation of Anhui Province(1808085ME114)
Richhtml ( 44 ) PDF ( 1107 ) Cited
Export

EndNote

Ris

BibTeX

Condensed matter chemistry deals with the synthesis, the composition, the structure, the property, the interaction and the chemical reaction of condensed matter. The research of an unusual type of natural condensed matter, biomineral, has greatly extended the scope of condensed matter chemistry. These biominerals are always grown via non-classical pathways under ambient but complex conditions. The well-designed hierarchical structures, which have evolved for millions of years, endow them with superior performance by taking advantage of the interfacial interactions between different condensed matters that comprise these biominerals. In this review, we elaborate some extraordinary mechanisms involved in the formation and transformation of biominerals, and analyze the new features of the syntheses and chemical reactions of condensed matters. We also introduce the applications of condensed matter chemistry supported by the research of biominerals. We conclude by proposing problems to be solve in the future and prospects of condensed matter chemistry research of biominerals.

Contents

===1 Introduction

===2 Formation of biomineral condensed matters

===2.1 Classical theory

===2.2 Oriented attachment growth

===2.3 Liquid precursor mechanism

===2.4 Mesocrystal

===3 Transformation of biomineral condensed matters

===3.1 Calcium carbonate

===3.2 Calcium phosphate

===3.3 Silica

===3.4 Iron oxide

===4 Applications of biomineral-inspired condensed matters

===4.1 Structural biominerals

===4.2 Functional biominerals

===4.3 Biomineral-inspired structural materials

===4.4 Biomineral-inspired biomedical materials

===4.5 Biomineral-inspired functional materials

===5 Conclusion and perspective

Fig.1 Formation of biomineral condensed matters, including classical theory and non-classical crystallization[6,7,8]
Fig.2 Transformation process of biomineral condensed matters
Fig.3 Natural biomineral condensed matters. (a) Biominerals with mechanical properties:(counterclockwise) microscopic image of the transverse section of human bone[82], copyright 2018, AAAS; nacre[69], copyright 2019, John Wiley and Sons; chiton teeth and chiton[65], copyright 2013, John Wiley and Sons; mantis shrimp dactyl club[91], copyright 2018, John Wiley and Sons; mantis shrimp telson[96],copyright 2019, John Wiley and Sons; mantis shrimp dactyl club saddle[94], copyright 2015, John Wiley and Sons.(b) Biominerals with functional properties:(counterclockwise): magnetosomes in the magnetotactic bacteria[102], copyright 2016, Springer Nature; brittle stars[100], copyright 2001, Springer Nature; transparent teeth of the deep-sea dragonfish[101], copyright 2019, Cell Press; aragonite-based lenses in chiton eye[99], copyright 2015, AAAS.(c) Biominerals with other properties: photomicrograph of calcium oxalate crystals in plants[103], copyright 2011, Elsevier B.V
Fig.4 (a) Fabrication of synthetic nacre[109], copyright 2016, AAAS.(b) Scheme of a biomimetic mineralization process for epitaxial crystal growth and the HRTEM images before and after the growth [118], copyright 2019, AAAS.(c) Preparation and structure of biomimetic columnar composites[108], copyright 2017, Springer Nature.(d) Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films, and SEM images of synthetic and natural prisms[110], copyright 2017, Springer Nature
[1]
Xu R . Nat. Sci. Rev., 2018,5:1.
[2]
Xu R , Wang K , Chen G , Yan W . Nat. Sci. Rev., 2019,6:191.
[3]
Eder M , Amini S , Fratzl P . Science, 2018,362:543.
[4]
Sanderson K . Nature, 2015,519:S14.
[5]
Thanh N T , Maclean N , Mahiddine S . Chem. Rev., 2014,114:7610.
[6]
Gower L B . Chem. Rev., 2008,108:4551.
[7]
Meldrum F C , Colfen H . Chem. Rev., 2008,108:4332.
[8]
Sommerdijk N A , de With G . Chem. Rev., 2008,108:4499.
[9]
Davis K J , Dove P M , De Yoreo J . J. Science, 2000,290:1134.
[10]
Han Y J , Aizenberg J . Am. Chem. Soc., 2003,125:4032.
[11]
Gong X , Wang Y W , Ihli J , Kim Y Y , Li S , Walshaw R , Chen L , Meldrum F C . Adv. Mater., 2015,27:7395.
[12]
Liu Z , Meyers M A , Zhang Z , Ritchie R O . Prog. Mater. Sci., 2017,88:467.
[13]
Orme C A , Noy A , Wierzbicki A , McBride M T , Grantham M , Teng H H , Dove P M , DeYoreo J . J. Nature, 2001,411:775.
[14]
Aizenberg J , Muller D A , Grazul J L , Hamann D R . Science, 2003,299:1205.
[15]
Han Y J , Aizenberg J . Angew. Chem. Int. Ed., 2003,42:3668.
[16]
Zeng M , Kim Y Y , Anduix Canto C , Frontera C , Laundy D , Kapur N , Christenson H K , Meldrum F C . Proc. Natl. Acad. Sci. U. S. A., 2018,115:7670.
[17]
De Yoreo J J , Gilbert P U , Sommerdijk N A , Penn R L , Whitelam S , Joester D , Zhang H , Rimer J D , Navrotsky A , Banfield J F , Wallace A F , Michel F M , Meldrum F C , Colfen H , Dove P M. Science , 2015, 349: aaa6760.
[18]
Gilbert P , Porter S M , Sun C Y , Xiao S , Gibson B M , Shenkar N , Knoll A H . Proc. Natl. Acad. Sci. U. S. A., 2019,116:17659.
[19]
Li D , Nielsen M H , Lee J R , Frandsen C , Banfield J F , De Yoreo J . J. Science, 2012,336:1014.
[20]
Nielsen M H , Aloni S , De Yoreo J . Science, 2014,345:1158.
[21]
Kim Y-Y , Douglas E P , Gower L B . Langmuir, 2007,23:4862
[22]
Smeets P J M , Finney A R , Habraken W J E M , Nudelman F , Friedrich H , Laven J , De Yoreo J J , Rodger P M , Sommerdijk N A J M . Proc. Natl. Acad. Sci. U. S. A., 2017,114:E7882.
[23]
Bahn S Y , Jo B H , Choi Y S , Cha H J . Sci. Adv., 2017,3:e1700765.
[24]
Xu Y F , Tijssen K C H , Bomans P H H , Akiva A , Friedrich H , Kentgens A P M , Sommerdijk N . Nat. Commun., 2018,9:2582.
[25]
Wolf S E , Leiterer J , Pipich V , Barrea R , Emmerling F , Tremel W . Am. Chem. Soc., 2011,133:12642.
[26]
Bergström L , Sturm E V , Salazar Alvarez G , Cölfen H . Acc. Chem. Res., 2015,48:1391.
[27]
Chen S F , Yu S H , Jiang J , Li F , Liu Y . Chem. Mater., 2006,18:115.
[28]
Picker A , Nicoleau L , Burghard Z , Bill J , Zlotnikov I , Labbez C , Nonat A , Colfen H . Sci. Adv., 2017,3:e1701216.
[29]
Yu P T , Tsao C , Wang C C , Chang C Y , Wang C H , Chan J C C . Angew. Chem. Int. Ed., 2017,129:16420.
[30]
Fei X , Li W , Shao Z , Seeger S , Zhao D , Chen X . Am. Chem. Soc., 2014,136:15781.
[31]
Bewernitz M A , Gebauer D , Long J , Cölfen H , Gower L B . Faraday Discuss., 2012,159:291.
[32]
Yang X , Wang M , Yang Y , Cui B , Xu Z , Yang X . Phys. Chem. Chem. Phys., 2019,21:14530.
[33]
Blue C R , Giuffre A , Mergelsberg S , Han N , De Yoreo J J , Dove P M . Geochim. Cosmochim. Ac., 2017,196:179.
[34]
Zou Z , Habraken W , Matveeva G , Jensen A C S , Bertinetti L , Hood M A , Sun C Y , Gilbert P , Polishchuk I , Pokroy B , Mahamid J , Politi Y , Weiner S , Werner P , Bette S , Dinnebier R , Kolb U , Zolotoyabko E , Fratzl P . Science, 2019,363:396.
[35]
Bushuev Y G , Finney A R , Rodger P M . Cryst. Growth Des., 2015,15:5269.
[36]
Alberic M , Bertinetti L , Zou Z , Fratzl P , Habraken W , Politi Y . Adv. Sci., 2018,5:1701000.
[37]
Konrad F , Purgstaller B , Gallien F , Mavromatis V , Gane P , Dietzel M . J. Cryst. Growth, 2018,498:381.
[38]
Jung G Y , Shin E , Park J H , Choi B-Y , Lee S-W , Kwak S K . Chem. Mater., 2019,31:7547.
[39]
Zou Z Y , Bertinetti L , Politi Y , Fratzl P , Habraken W . Small, 2017,13:1603100.
[40]
Zou Z Y , Bertinetti L , Habraken W J E M , Fratzl P . CrystEngComm, 2018,20:2902.
[41]
Rodriguez Blanco J D , Shaw S , Benning L G . Nanoscale, 2011,3:265.
[42]
Maruyama K , Kagi H , Komatsu K , Yoshino T , Nakano S . Raman Spectrosc., 2017,48:1449.
[43]
Belcher A M , Wu X H , Christensen R J , Hansma P K , Stucky G D , Morse D E . Nature, 1996,381:56.
[44]
Jiang S , Jin W , Wang Y N , Pan H , Sun Z , Tang R . RSC Adv., 2017,7:25497.
[45]
Jin W , Jiang S , Pan H , Tang R . Crystals, 2018,8:48.
[46]
Uskokovic V . Cryst. Growth Des., 2019,19:4340.
[47]
Zhang J , Wang L , Zhang W , Putnis C V . Langmuir, 2020,36(8):2102.
[48]
Windarti T , Taslimah , Haris A , Astuti Y , Darmawan A . IOP Conf. Ser.: Mater. Sci. Eng., 2017,172:012058.
[49]
Kajiyama S , Sakamoto T , Inoue M , Nishimura T , Yokoi T , Ohtsuki C , Kato T . CrystEngComm, 2016,18:8388.
[50]
Stammeier J A , Purgstaller B , Hippler D , Mavromatis V , Dietzel M . MethodsX, 2018,5:1241.
[51]
Liu B , Cao Y , Huang Z , Duan Y , Che S . Adv. Mater., 2015,27:479.
[52]
Nabil M , Mahmoud K R , El Shaer A , Nayber H A . J. Phys. Chem. Solids, 2018,121:22.
[53]
Lei Y , He Y , Chen F , Xu J . Interceram-Int. Ceram. Rev., 2015,64:214.
[54]
Fuchs I , Aluma Y , Ilan M , Mastai Y . J. Phys. Chem. B, 2014,118:2104.
[55]
Buckley P , Hargreaves N , Cooper S . Commun. Chem., 2018,1:49.
[56]
Nishiyama N , Wakai F , Ohfuji H , Tamenori Y , Murata H , Taniguchi T , Matsushita M , Takahashi M , Kulik E , Yoshida K , Wada K , Bednarcik J , Irifune T . Sci. Rep., 2014,4:6558.
[57]
Misawa M , Ryuo E , Yoshida K , Kalia R K , Nakano A , Nishiyama N , Shimojo F , Vashishta P , Wakai F . Sci. Adv., 2017,3:e1602339.
[58]
Bykova E , Bykov M , Cernok A , Tidholm J , Simak S I , Hellman O , Belov M P , Abrikosov I A , Liermann H P , Hanfland M , Prakapenka V B , Prescher C , Dubrovinskaia N , Dubrovinsky L . Nat. Commun., 2018,9:4789.
[59]
Nemoto M , Ren D , Herrera S , Pan S , Tamura T , Inagaki K , Kisailus D . Sci. Rep., 2019,9:856.
[60]
Faivre D . Iron Oxides: From Nature to Applications. Weinheim: John Wiley & Sons, 2016.
[61]
Bykova E , Dubrovinsky L , Dubrovinskaia N , Bykov M , McCammon C , Ovsyannikov S V , Liermann H P , Kupenko I , Chumakov A I , Ruffer R , Hanfland M , Prakapenka V . Nat. Commun., 2016,7:10661.
[62]
Ovsyannikov S V , Bykov M , Bykova E , Glazyrin K , Manna R S , Tsirlin A A , Cerantola V , Kupenko I , Kurnosov A V , Kantor I , Pakhomova A S , Chuvashova I , Chumakov A I , Ruffer R , McCammon C , Dubrovinsky L S . Nat. Commun., 2018,9:4142.
[63]
Anupama A V , Keune W , Sahoo B . Magn. Magn. Mater., 2017,439:156. https://linkinghub.elsevier.com/retrieve/pii/S030488531631767X

doi: 10.1016/j.jmmm.2017.04.094
[64]
Gordon L M , Roman J K , Everly R M , Cohen M J , Wilker J J , Joester D . Angew. Chem. Int. Ed., 2014,53:11506.
[65]
Wang Q , Nemoto M , Li D , Weaver J C , Weden B , Stegemeier J , Bozhilov K N , Wood L R , Milliron G W , Kim C S . Adv. Funct. Mater., 2013,23:2908.
[66]
Jiang Z , Liu Q , Roberts A P , Barrón V , Torrent J , Zhang Q . Geology, 2018,30395.
[67]
Chen C , Sparks D L . ACS Earth Space Chem., 2018,2:1095.
[68]
Zhou Z , Latta D E , Noor N , Thompson A , Borch T , Scherer M M . Environ. Sci. Technol., 2018,52:11142.
[69]
Huang W , Restrepo D , Jung J Y , Su F Y , Liu Z , Ritchie R O , McKittrick J , Zavattieri P , Kisailus D . Adv. Mater., 2019,31:e1901561.
[70]
Espinosa H D , Rim J E , Barthelat F , Buehler M J . Prog. Mater. Sci., 2009,54:1059.
[71]
Wegst U G , Bai H , Saiz E , Tomsia A P , Ritchie R O . Nat. Mater., 2015,14:23.
[72]
Barthelat F . Science, 2016,354:32.
[73]
Boyde A . The Development of Enamel Structure. SAGE Publications, 1967.
[74]
Chai H , Lee J J W , Constantino P J , Lucas P W , Lawn B R . Proc. Natl. Acad. Sci. U. S. A., 2009,106:7289.
[75]
Lawn B R , Lee J J W , Chai H . Annu. Rev. Mater. Res., 2010,40:55.
[76]
Lewin R . Science, 1985,228:707.
[77]
Beniash E , Stifler C A , Sun C Y , Jung G S , Qin Z , Buehler M J , Gilbert P U . Nat. Commun., 2019,10:4383.
[78]
Fincham A , Moradian Oldak J , Simmer J . Struct. Biol., 1999,126:270.
[79]
Barber A H , Lu D , Pugno N M . J. R. Soc. Interf., 2015,12:20141326.
[80]
Tao J , Battle K C , Pan H , Salter E A , Chien Y C , Wierzbicki A , De Yoreo J J . Proc. Natl. Acad. Sci. U. S. A., 2015,112:326.
[81]
Nudelman F , Pieterse K , George A , Bomans P H , Friedrich H , Brylka L J , Hilbers P A , de With G , Sommerdijk N A . Nat. Mater., 2010,9:1004.
[82]
Reznikov N , Bilton M , Lari L , Stevens M M , Kröger R . Science., 2018, 360: eaao2189.
[83]
Meyers M A , Lin A Y M , Chen P Y , Muyco J. . J. Mech. Behav. Biomed., 2008,1:76.
[84]
Lin Y S , Wei C T , Olevsky E A , Meyers M A . Mech. Behav. Biomed., 2011,4:1145.
[85]
Falini G , Albeck S , Weiner S , Addadi L . Science, 1996,271:67.
[86]
Suzuki M , Saruwatari K , Kogure T , Yamamoto Y , Nishimura T , Kato T , Nagasawa H . Science, 2009,325:1388.
[87]
Luz G M , Mano J F . Philos. T. R. Soc. A, 2009,367:1587.
[88]
Gao H , Ji B , Jager I L , Arzt E , Fratzl P . Proc. Natl. Acad. Sci. U. S. A., 2003,100:5597.
[89]
Zlotnikov I , Schoeppler V . Adv. Funct. Mater., 2017,27:1700506.
[90]
Schoeppler V , Granasy L , Reich E , Poulsen N , de Kloe R , Cook P , Rack A , Pusztai T , Zlotnikov I . Adv. Mater., 2018,30:e1803855.
[91]
Grunenfelder L K , Milliron G , Herrera S , Gallana I , Yaraghi N , Hughes N , Evans Lutterodt K , Zavattieri P , Kisailus D . Adv. Mater., 2018,30:1705295.
[92]
Weaver J C , Milliron G W , Miserez A , Evans Lutterodt K , Herrera S , Gallana I , Mershon W J , Swanson B , Zavattieri P , DiMasi E . Science, 2012,336:1275.
[93]
Yaraghi N A , Grunenfelder L , Suksangpanya N , Guarin N , Herrera S , Milliron G , Zavattieri P , Sheppard L , Wuhrer R , Kisailus D . Microsc. Microanal., 2015,21:2007.
[94]
Tadayon M , Amini S , Masic A , Miserez A . Adv. Funct. Mater., 2015,25:6437.
[95]
Tadayon M , Amini S , Wang Z , Miserez A . iScience, 2018,8:271.
[96]
Yaraghi N A , Trikanad A A , Restrepo D , Huang W , Rivera J , Herrera S , Zhernenkov M , Parkinson D Y , Caldwell R L , Zavattieri P D . Adv. Funct. Mater., 2019,29:1902238.
[97]
Yang W , Quan H , Meyers M A , Ritchie R O . Matter, 2019,1:1557.
[98]
Yang W , Sherman V R , Gludovatz B , Mackey M , Zimmermann E A , Chang E H , Schaible E , Qin Z , Buehler M J , Ritchie R O . Acta Biomater., 2014,10:3599.
[99]
Li L , Connors M J , Kolle M , England G T , Speiser D I , Xiao X , Aizenberg J , Ortiz C . Science, 2015,350:952.
[100]
Aizenberg J , Tkachenko A , Weiner S , Addadi L , Hendler G . Nature, 2001,412:819.
[101]
Velasco Hogan A , Deheyn D D , Koch M , Nothdurft B , Arzt E , Meyers M A . Matter, 2019,1:235.
[102]
Uebe R , Schüler D . Nat. Rev. Microbiol., 2016,14:621.
[103]
Asadi H , Mohamed S , Lim C P , Nahavandi S . Behav. Brain Res., 2016,309:67.
[104]
Bauer P , Elbaum R , Weiss I M . Plant Sci., 2011,180:746.
[105]
Sun S , Mao L B , Lei Z , Yu S H , Cölfen H . Angew. Chem. Int. Ed., 2016,55:11765.
[106]
Natalio F , Corrales T P , Panthofer M , Schollmeyer D , Lieberwirth I , Muller W E G , Kappl M , Butt H J, Tremel W . Science, 2013,339:1298.
[107]
He W X , Rajasekharan A K , Tehrani-Bagha A R , Andersson M . Adv. Mater., 2015,27:2260.
[108]
Yeom B , Sain T , Lacevic N , Bukharina D , Cha S-H , Waas A M , Arruda E M , Kotov N A . Nature, 2017,543:95.
[109]
Mao L B , Gao H L , Yao H B , Liu L , Cölfen H , Liu G , Chen S M , Li S K , Yan Y X , Liu Y Y . Science, 2016,354:107.
[110]
Xiao C , Li M , Wang B , Liu M F , Shao C , Pan H , Lu Y , Xu B B , Li S , Zhan D , Jiang Y , Tang R K , Liu X Y , Cölfen H . Nat. Commun., 2017,8:1398.
[111]
Picker A , Nicoleau L , Nonat A , Labbez C , Cölfen H . Adv. Mater., 2014,26:1135.
[112]
Matsumura S , Kajiyama S , Nishimura T , Kato T . Small, 2015,11:5127.
[113]
Liu Y , Liu S , Luo D , Xue Z , Yang X , Gu L , Zhou Y , Wang T . Adv. Mater., 2016,28:8740.
[114]
Elsharkawy S , Al Jawad M , Pantano M F , Tejeda Montes E , Mehta K , Jamal H , Agarwal S , Shuturminska K , Rice A , Tarakina N V , Wilson R M , Bushby A J , Alonso M , Rodriguez-Cabello J C , Barbieri E , del Río Hernández A , Stevens M M , Pugno N M , Anderson P , Mata A , Barbieri E . Nat. Commun., 2018,9:2145.
[115]
Nonoyama T , Wada S , Kiyama R , Kitamura N , Mredha M T I , Zhang X , Kurokawa T , Nakajima T , Takagi Y , Yasuda K . Adv. Mater., 2016,28:6740.
[116]
Niu L N , Jee S E , Jiao K , Tonggu L , Li M , Wang L , Yang Y D , Bian J H , Breschi L , Jang S S . Nat. Mater., 2017,16:370.
[117]
Sun J L , Jiao K , Niu L N , Jiao Y , Song Q , Shen L J , Tay F R , Chen J H . Biomaterials, 2017,113:203.
[118]
Shao C , Jin B , Mu Z , Lu H , Zhao Y , Wu Z , Yan L , Zhang Z , Zhou Y , Pan H . Sci. Adv., 2019, 5: eaaw9569.
[119]
Wang Y , Hu X , Zhang L , Zhu C , Wang J , Li Y , Wang Y , Wang C , Zhang Y , Yuan Q . Nat. Commun., 2019,10:2829.
[120]
Zhao R , Wang B , Yang X , Xiao Y , Wang X , Shao C , Tang R . Angew. Chem. Int. Ed., 2016,55:5225.
[121]
Lee K , Wagermaier W , Masic A , Kommareddy K P , Bennet M , Manjubala I , Lee S W , Park S B , Cölfen H , Fratzl P . Nat. Commun., 2012,3:725.
[122]
Sun Z , Liao T , Li W , Qiao Y , Ostrikov K . Adv. Funct. Mater., 2019,29:1901460.
[123]
Xia K , Wu W , Zhu M , Shen X , Yin Z , Wang H , Li S , Zhang M , Wang H , Lu H , Pan A , Pan C , Zhang Y . Sci. Bull., 2019.
[124]
Kokubu T , Oaki Y , Uchiyama H , Hosono E , Zhou H , Imai H . Chem.-Asian J., 2010,5:792.
[125]
Galloway J M , Talbot J E , Critchley K , Miles J J , Bramble J P . Adv. Funct. Mater., 2015,25:4590.
[126]
Nakayama M , Kajiyama S , Kumamoto A , Nishimura T , Ikuhara Y , Yamato M , Kato T . Nat. Commun., 2018,9:568.
[127]
Brody H . Nature, 2015,519:S1.
[128]
Espinosa H D , Soler Crespo R . Nature, 2017,543:42.
[129]
Bouville F , Maire E , Meille S , Van de Moortèle B , Stevenson A J , Deville S . Nat. Mater., 2014,13:508.
[130]
He Z , Yang Y , Liu J W , Yu S H . Chem. Soc. Rev., 2017,46:2732.
[1] Peng Xu, Biao Yu. Challenges in Chemical Synthesis of Glycans and the Possible Problems Relevant to Condensed Matter Chemistry [J]. Progress in Chemistry, 2022, 34(7): 1548-1553.
[2] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[3] Guilong Wang, Xin Cui, Ying Chen, Zhen-feng Hu, Xiubing Liang, Fuxue Chen. Underwater Biomimetic Adhesive Based on Mussel Inspiration [J]. Progress in Chemistry, 2021, 33(12): 2378-2391.
[4] Yanhua Sang, Haihua Pan, Ruikang Tang. Condensed-Matter Chemistry in Biomineralization [J]. Progress in Chemistry, 2020, 32(8): 1100-1114.
[5] Xiaoyang Liu. Condensed Matter Chemistry under High Pressure [J]. Progress in Chemistry, 2020, 32(8): 1184-1202.
[6] Xiping Jing. From Solid State Chemistry to Condensed Matter Chemistry [J]. Progress in Chemistry, 2020, 32(8): 1049-1059.
[7] Xiaoxiao Xie, Xiaoming Ma*, Xiangli Ru, Yi Chang, Yuming Guo, Lin Yang*. Biomimetic Mineralization Synthesis of Nanomaterials Under the Mediation of Cells and Potential Applications [J]. Progress in Chemistry, 2018, 30(10): 1511-1523.
[8] Yang Haocheng, Chen Yifu, Ye Chen, Wan Lingshu, Xu Zhikang. Advances in Porous Organic-Inorganic Composite Membranes [J]. Progress in Chemistry, 2015, 27(8): 1014-1024.
[9] Wang Shengjie, Cai Qingwei, Du Mingxuan, Cao Meiwen, Xu Hai. Biomimetic Mineralization of Silica [J]. Progress in Chemistry, 2015, 27(2/3): 229-241.
[10] Pan Yu, Li Na, Zhou Runhong, Zhao Min. Nano-Magnetosomes in Magnetotactic Bacteria [J]. Progress in Chemistry, 2013, 25(10): 1781-1794.
[11] Wang Ben, Tang Ruikang*. Biomineralization: One Promising Bridge between Inorganic Chemistry and Biomedicine [J]. Progress in Chemistry, 2013, 25(04): 633-641.
[12] Ouyang Jianming*, Zhang Guangna, Wang Fengxin, Li Junjun. Nucleation, Growth, and Aggregation of Nanocrystallites in Urine of Calcium Oxalate Stone Patients as well as Kidney Stone Formation [J]. Progress in Chemistry, 2013, 25(04): 642-649.
[13] Huang Ping, Chai Shigan, Yuan Jianjun, Lu Guohong, Yang Tingting, Cheng Shiyuan. Preparation of Silica/Polymer Core-Shell Hybrid Particles and Their Hollow Structures [J]. Progress in Chemistry, 2012, 24(01): 31-38.
[14] Liu Chuang, Wang Yuangui, Geng Jiaqing, Jiang Zhongyi, Yang Dong. Biosynthesis of Inorganic Nanoparticles [J]. Progress in Chemistry, 2011, 23(12): 2510-2521.
[15] Wu Congmeng, Wang Xiaoqiang, Zhao Kang, Cao Meiwen, Xu Hai, Lü Jianren. AFM Study of Calcite Growth and Dissolution on the (104) Face [J]. Progress in Chemistry, 2011, 23(01): 107-124.