中文
Announcement
More
Progress in Chemistry 2020, Vol. 32 Issue (4): 406-416 DOI: 10.7536/PC190732 Previous Articles   Next Articles

The Bonding Strength and Stability Between Hydroxyapatite Coating and Titanium or Titanium Alloys

Qiaoxia Lin1, Meng Yin1, Yan Wei1, Jingjing Du1, Weiyi Chen1,2, Di Huang1,2,**()   

  1. 1. Research Center for Nano-biomaterials & Regenerative Medicine, Department of Biomedical Engineering, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China;
    2. Institute of Applied Mechanics & Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan 030024, China;
  • Received: Revised: Online: Published:
  • Contact: Di Huang
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(11632013, 11502158, 11802197, 11902214); the International Cooperation Project Foundation of Shanxi Province(201803D421060); the Natural Science Foundation for Young Scientist of Shanxi Province(201801D221439)
Richhtml ( 16 ) PDF ( 766 ) Cited
Export

EndNote

Ris

BibTeX

Titanium (Ti) and Ti alloys have been the main clinical application materials for bone and dental implants due to their excellent mechanical properties and good biocompatibility. However, it is not easy to achieve rapid osseointegration with surrounding bone tissues because of the biological inertia of titanium materials. Therefore, the biological activity of implant surface is further required. Hydroxyapatite (HA) is the main inorganic component of human bones and teeth, which has good bioactivity and biocompatibility. But restricted by its own brittleness, HA is often used as a coating material to cover the surface of Ti substrates to improve the biological activity of implants. However, the problems of weak bonding strength between coating and substrate and poor mechanical stability of coating have been the main factors limiting the wide clinical applications of HA coated titanium implants. From the aspects of coating structure, composition and preparation method, the research status and development trend of improving the interface bonding strength between Ti substrate and HA coating at home and abroad are summarized, which could provide a reference for the preparation and application of high-performance titanium implants.

Contents

1 Introduction

2 Structural design

2.1 Interface roughening

2.2 Interface nanocrystallization

2.3 Interface gradient design

3 Composition design

3.1 Inorganic ion addition

3.2 Metal and bioceramic addition

3.3 Other

4 Preparation

4.1 High-temperature preparation

4.2 Low-temperature preparation

4.3 Composite preparation

5 Conclusion and outlook

Fig. 1 Schematic illustration of physical adsorption, chemical bonding, and mechanical interlocking[13]
Fig. 2 Schematic representation of the graded coating[34]
Fig. 3 Perspective view along the c-axis of the OH channel environment. Some of the possible substituting ions are reported. The two triangles join Ca(Ⅱ) ions at the same level along the c-axis[38]
Fig. 4 Schematic illustration of PVD magnetron sputtering for pure-HA and ion substituted-HA coatings[37]
Fig. 5 The schematic illustration of formation of calcium phosphate biominerals on the polypyrrole nanowires doped with polydopamine. (a, b) the polypyrrole nanowires deposited on the biomedical titanium through the simultaneous electrical polymerization of dopamine and pyrrole. (c, d) catechol moiety on the surface of conducting polypyrrole nanowires doped with polydopamine assists calcium phosphate crystal formation[56]
Fig. 6 A typical representation of strengthening and toughening by fibres (A, C) represent two views of crack in a body being perturbed by fibres, (B, D) represent the see-through image of the body presented in A and C, for a better understanding of the reinforcement effects[67]
Table 1 Different high-temperature preparation methods to form HA coating[13,37,68~73]
Table 2 Different low-temperature preparation methods to form HA coating[13,43,70,77~79]
Fig. 7 Schematic diagram of laser-assisted cold spray system[88]
[1]
Niinomi M , Liu Y , Nakai M , Liu H H , Li H . Regener. Biomater, 2016,3(3):173.
[2]
Hamidi M , Harun W S W , Samykano M, Ghani S a C, Ghazalli Z, Ahmad F, Sulong A B . Mater. Sci. Eng. C-Mater. Biol. Appl., 2017,78:1263. https://linkinghub.elsevier.com/retrieve/pii/S0928493117317186

doi: 10.1016/j.msec.2017.05.016
[3]
Tien Y C , Chih T T , Lin J H C , Ju C P , Lin S D. J. Bone Joint Surg. Br., 2004, 86-B(7):1072. http://online.boneandjoint.org.uk/doi/10.1302/0301-620X.86B7.14578

doi: 10.1302/0301-620X.86B7.14578
[4]
Koutsopoulos S . J Biomed. Mater. Res., 2002,62(4):600. http://doi.wiley.com/10.1002/%28ISSN%291097-4636

doi: 10.1002/(ISSN)1097-4636
[5]
Carrado A , Perrin Schmitt F , Le Q V , Giraudel M , Fischer C , Koenig G , Jacomine L , Behr L , Chalom A , Fiette L , Morlet A , Pourroy G . Dent. Mater, 2017,33(3):321. https://linkinghub.elsevier.com/retrieve/pii/S0109564117300027

doi: 10.1016/j.dental.2016.12.013
[6]
Yang C Y , Wang B C , Chang E , Wu B C .J Mater. Sci.-Mater. Med., 1995,6(5):258. http://link.springer.com/10.1007/BF00120268

doi: 10.1007/BF00120268
[7]
Nguyen H Q , Deporter D A , Pilliar R M , Valiquette N , Yakubovich R . Biomaterials, 2004,25(5):865. f246a59e-6bde-480d-b48e-190c4e9b25a2 http://www.sciencedirect.com/science/article/pii/S0142961203006070

doi: 10.1016/S0142-9612(03)00607-0
[8]
孙金平(Sun J P) . 哈尔滨工业大学博士论文(Doctoral Dissertation of Harbin Institute of Technology), 2014.
[9]
姚蔚(Yao W) . 太原理工大学博士论文(Doctoral Dissertation of Taiyuan University of Technology), 2016.
[10]
Zhang C , Leng Y , Chen J .J Biomed. Mater. Res., 2001,56(3):342. http://doi.wiley.com/10.1002/%28ISSN%291097-4636

doi: 10.1002/(ISSN)1097-4636
[11]
曹阳(Cao Y) . 四川大学博士论文(Doctoral Dissertation of Sichuan University), 2005.
[12]
Huang Y , Zhang X J , Zhang H L , Qiao H X , Zhang X Y , Jia T J , Han S G , Gao Y , Xiao H Y , Yang H J. Ceram. Int., 2017,43(1):992. https://linkinghub.elsevier.com/retrieve/pii/S0272884216317801

doi: 10.1016/j.ceramint.2016.10.031
[13]
Harun W S W , Asri R I M , Alias J , Zulkifli F H , Kadirgama K , Ghani S a C , Shariffuddin J H M . Ceram. Int., 2018,44(2):1250. https://linkinghub.elsevier.com/retrieve/pii/S0272884217323635

doi: 10.1016/j.ceramint.2017.10.162
[14]
Guipont V , Jeandin M , Bansard S , Khor K A , Nivard M , Berthe L , Cuq Lelandais J P , Boustie M. J. Biomed. Mater. Res. Part A, 2010,95A(4):1096. http://doi.wiley.com/10.1002/jbm.a.v95a%3A4

doi: 10.1002/jbm.a.v95a:4
[15]
Wei D Q , Du Q , Guo S , Jia D C , Wang Y M , Li B Q , Zhou Y. Surf. Coat. Technol., 2018,340:93. https://linkinghub.elsevier.com/retrieve/pii/S0257897218301324

doi: 10.1016/j.surfcoat.2018.02.023
[16]
Zavgorodniy A V , Borrero Lopez O , Hoffman M , Legeros R Z , Rohanizadeh R . J. Biomed. Mater. Res. Part B, 2011,99B(1):58. http://doi.wiley.com/10.1002/jbm.b.v99b.1

doi: 10.1002/jbm.b.v99b.1
[17]
Yang S , Man H C , Xing W , Zheng X B. Surf. Coat. Technol., 2009,203(20/21):3116. https://linkinghub.elsevier.com/retrieve/pii/S0257897209002941

doi: 10.1016/j.surfcoat.2009.03.034
[18]
Farnoush H , Mohandesi J A , Fatmehsari D H , Moztarzadeh F . Ceram. Int, 2012,38(6):4885. https://linkinghub.elsevier.com/retrieve/pii/S0272884212001940

doi: 10.1016/j.ceramint.2012.02.079
[19]
Oh I K , Nomura N , Chiba A , Murayama Y , Masahashi N , Lee B T , Hanada S .J Mater. Sci.-Mater. Med., 2005,16(7):635. http://link.springer.com/10.1007/s10856-005-2534-4

doi: 10.1007/s10856-005-2534-4
[20]
Ji X L , Lou W W , Wang Q , Ma J F , Xu H H , Bai Q , Liu C T , Liu J S. Int. J. Mol. Sci., 2012,13(4):5242. http://www.mdpi.com/1422-0067/13/4/5242

doi: 10.3390/ijms13045242
[21]
Webster T J , Siegel R W , Bizios R . Scripta Mater, 2001,44(8/9):1639. https://linkinghub.elsevier.com/retrieve/pii/S1359646201008739

doi: 10.1016/S1359-6462(01)00873-9
[22]
Ning C Y , Wang Y J , Lu W W , Qiu Q X , Lam R W M , Chen X F, Chiu K Y, Ye J D, Wu G, Wu Z H, Chow S P.. J. Mater. Sci.-Mater. Med., 2006,17(10):875. http://link.springer.com/10.1007/s10856-006-0176-9

doi: 10.1007/s10856-006-0176-9
[23]
Huang Y H , Zheng H X , Lin A , Nishimura I. Rare Metal Mat. Eng., 2010,39:1. https://linkinghub.elsevier.com/retrieve/pii/S1875537210600719

doi: 10.1016/S1875-5372(10)60071-9
[24]
Bai L , Liu Y L , Du Z B , Weng Z M , Yao W , Zhang X Y , Huang X B , Yao X H , Crawford R , Hang R Q , Huang D , Tang B , Xiao Y . Acta Biomater, 2018,76:344. https://linkinghub.elsevier.com/retrieve/pii/S1742706118303696

doi: 10.1016/j.actbio.2018.06.023
[25]
Zhou Y L , Wu C T , Chang J . Mater Today, 2019,24:41. https://linkinghub.elsevier.com/retrieve/pii/S1369702118301457

doi: 10.1016/j.mattod.2018.07.016
[26]
Yang L K , Shen P , Guo R F , Li Y L , Jiang Q C. Scripta Mater., 2019,167:101. https://linkinghub.elsevier.com/retrieve/pii/S1359646219302039

doi: 10.1016/j.scriptamat.2019.04.004
[27]
Yamada K , Imamura K , Itoh H , Iwata H , Maruno S . Biomaterials, 2001,22(16):2207. 5c6e410f-1a33-4b41-b9f7-0ef4bab68df3 http://www.sciencedirect.com/science/article/pii/S0142961200004026

doi: 10.1016/S0142-9612(00)00402-6
[28]
Xie X H , Yu X W , Zeng S X , Du R L , Hu Y H , Yuan Z , Lu E Y , Dai K R , Tang T T .J Mater. Sci.-Mater. Med., 2010,21(7):2165. http://link.springer.com/10.1007/s10856-010-4077-6

doi: 10.1007/s10856-010-4077-6
[29]
Huang J C , Ni Y J , Wang Z C. Surf. Coat. Technol., 2010,204(21/22):3387. https://linkinghub.elsevier.com/retrieve/pii/S0257897210002616

doi: 10.1016/j.surfcoat.2010.03.058
[30]
Lin D Y , Zhao Y T. Adv. Eng. Mater., 2011,13(1/2):B18. http://doi.wiley.com/10.1002/adem.201080025

doi: 10.1002/adem.201080025
[31]
Rocha R C , De Sousa Galdino A G , Da Silva S N, Pereira Machado M L. Mater. Res.-Ibero-am. J. Mater., 2018,21(4).
[32]
Han C J , Li Y , Wang Q , Cai D S , Wei Q S , Yang L , Wen S F , Liu J , Shi Y S. Mater. Des., 2018,141:256. https://linkinghub.elsevier.com/retrieve/pii/S0264127517311425

doi: 10.1016/j.matdes.2017.12.037
[33]
Kim E J , Jeong Y H , Choe H C , Brantley W A . Thin Solid Films, 2014,572:113. 7e080c6c-b218-4dca-ae12-e78545791944 http://dx.doi.org/10.1016/j.tsf.2014.08.035

doi: 10.1016/j.tsf.2014.08.035
[34]
Henao J , Cruz Bautista M , Hincapie Bedoya J , Ortega Bautista B , Corona Castuera J , Giraldo Betancur A L , Espinosa Arbelaez D G, Alvarado Orozco J M, Clavijo Mejia G A, Trapaga Martinez L G, Poblano Salas C A.. J. Therm. Spray Technol., 2018,27(8):1302. https://doi.org/10.1007/s11666-018-0811-2

doi: 10.1007/s11666-018-0811-2
[35]
Wang J , Chao Y L , Wan Q B , Zhu Z M , Yu H Y. Acta Biomater., 2009,5(5):1798. https://linkinghub.elsevier.com/retrieve/pii/S1742706109000087

doi: 10.1016/j.actbio.2009.01.005
[36]
Cao L , Ullah I , Li N , Niu S Y , Sun R J , Xia D D , Yang R , Zhang X .J Mater. Sci. Technol., 2019,35(5):719. https://linkinghub.elsevier.com/retrieve/pii/S1005030218302810

doi: 10.1016/j.jmst.2018.10.020
[37]
Qadir M , Li Y , Wen C . Acta Biomater, 2019,89:14. https://linkinghub.elsevier.com/retrieve/pii/S1742706119301722

doi: 10.1016/j.actbio.2019.03.006
[38]
Bigi A , Boanini E , Gazzano M . 7-Ion Substitution in Biological and Synthetic Apatites. Boston: Woodhead Publishing, 2016. 235.
[39]
Boanini E , Gazzano M , Bigi A . Acta Biomater, 2010,6(6):1882. https://linkinghub.elsevier.com/retrieve/pii/S1742706109005820

doi: 10.1016/j.actbio.2009.12.041
[40]
Tite T , Popa A C , Balescu L M , Bogdan I M , Pasuk I , Ferreira J M F , Stan G E Materials, 2018,11(11).
[41]
Lou W W , Dong Y W , Zhang H L , Jin Y F , Hu X H , Ma J F , Liu J S , Wu G. Int. J. Mol. Sci., 2015,16(9):21070. http://www.mdpi.com/1422-0067/16/9/21070

doi: 10.3390/ijms160921070
[42]
Yilmaz B , Alshemary A Z , Evis Z. J . Microchem J., 2019,144:443. https://linkinghub.elsevier.com/retrieve/pii/S0026265X18307057

doi: 10.1016/j.microc.2018.10.007
[43]
Guillem Marti J , Cinca N , Punset M , Cano I G , Gil F J , Guilemany J M , Dosta S . Colloid Surf. B-Biointerfaces, 2019,180:245. https://linkinghub.elsevier.com/retrieve/pii/S0927776519302796

doi: 10.1016/j.colsurfb.2019.04.048
[44]
Tang J R , Zhao Z P , Liu H S , Cui X Y , Wang J Q , Xiong T Y. Mater. Lett., 2019,250:197. https://linkinghub.elsevier.com/retrieve/pii/S0167577X19306937

doi: 10.1016/j.matlet.2019.04.123
[45]
Morks M F . J Mech. Behav. Biomed. Mater., 2008,1(1):105. https://linkinghub.elsevier.com/retrieve/pii/S1751616107000070

doi: 10.1016/j.jmbbm.2007.04.003
[46]
Xu J L , Joguet D , Cizek J , Khor K A , Liao H L , Coddet C , Chen W N. Surf. Coat. Technol., 2012,206(22):4659. https://linkinghub.elsevier.com/retrieve/pii/S0257897212004410

doi: 10.1016/j.surfcoat.2012.05.042
[47]
Ke D X , Robertson S F , Dernell W S , Bandyopadhyay A , Bose S . ACS Appl. Mater. Interfaces, 2017,9(31):25731. https://pubs.acs.org/doi/10.1021/acsami.7b05574

doi: 10.1021/acsami.7b05574
[48]
Xiao X F , Liu R F , Zheng Y Z . J Mater. Sci., 2006,41(11):3417. http://link.springer.com/10.1007/s10853-005-5340-y

doi: 10.1007/s10853-005-5340-y
[49]
Farnoush H , Rezaei Z . Ceram. Int., 2017,43(15):11885. https://linkinghub.elsevier.com/retrieve/pii/S0272884217312385

doi: 10.1016/j.ceramint.2017.06.036
[50]
Yang L K , Shen P , Guo R F , Jiang Q C. Ceram. Int., 2018,44(13):15219. https://linkinghub.elsevier.com/retrieve/pii/S0272884218313087

doi: 10.1016/j.ceramint.2018.05.163
[51]
Rezazadeh Shirdar M , Sudin I , Taheri M M , Keyvanfar A , Yusop M Z M , Kadir M R A Vacuu, 2015,122:82. https://linkinghub.elsevier.com/retrieve/pii/S0042207X15300610

doi: 10.1016/j.vacuum.2015.09.008
[52]
Yao H L , Hu X Z , Bai X B , Wang H T , Chen Q Y , Ji G C. Surf. Coat. Tech., 2018,351:177. https://linkinghub.elsevier.com/retrieve/pii/S0257897218307898

doi: 10.1016/j.surfcoat.2018.07.082
[53]
Askari N , Yousefpour M , Rajabi M. Int. J. Appl. Ceram. Technol., 2018,15(4):970.
[54]
Xia Z M , Yu X H , Wei M . J. Biomed. Mater. Res. Part B, 2012,100B(3):871. http://doi.wiley.com/10.1002/jbm.b.v100b.3

doi: 10.1002/jbm.b.v100b.3
[55]
Huang S S , Liang N Y , Hu Y , Zhou X , Abidi N. Biomed. Res. Int., 2016.
[56]
Wang Z G , Zeng J Q , Tan G X , Liao J W , Zhou L , Chen J Q , Yu P , Wang Q Y , Ning C Y. Bioact. Mater., 2018,3(1):74.
[57]
Zhu B W , Wang S M , Wang L , Yang Y , Liang J , Cao B C . Coatings, 2017,7(7).
[58]
Chen W Z , Shen X K , Hu Y , Xu K , Ran Q C , Yu Y L , Dai L L , Yuan Z , Huang L , Shen T T , Cai K Y . Biomaterials, 2017,114:82. https://linkinghub.elsevier.com/retrieve/pii/S0142961216306056

doi: 10.1016/j.biomaterials.2016.10.055
[59]
Lahiri D , Ghosh S , Agarwal A. Mater. Sci. Eng. C-Mater. Biol. Appl., 2012,32(7):1727. https://linkinghub.elsevier.com/retrieve/pii/S0928493112002147

doi: 10.1016/j.msec.2012.05.010
[60]
Li M , Xiong P , Yan F , Li S J , Ren C H , Yin Z C , Li A , Li H F , Ji X M , Zheng Y F , Cheng Y . Bioact. Mater., 2018,3(1):1.
[61]
Zhong Z Y , Qin J L , Ma J . Ceram. Int., 2015,41(7):8878. https://linkinghub.elsevier.com/retrieve/pii/S0272884215005507

doi: 10.1016/j.ceramint.2015.03.145
[62]
Turk S , Altinsoy I , Efe G C , Ipek M , Ozacar M , Bindal C. Mater. Sci. Eng. C-Mater. Biol. Appl., 2019,99:986. https://linkinghub.elsevier.com/retrieve/pii/S0928493118332302

doi: 10.1016/j.msec.2019.02.025
[63]
Park S , Ruoff R S. Nat. Nanotechnol., 2009,4(4):217. https://doi.org/10.1038/nnano.2009.58

doi: 10.1038/nnano.2009.58
[64]
Zeng Y X , Pei X B , Yang S Y , Qin H , Cai H , Hu S S , Sui L , Wan Q B , Wang J. Surf. Coat. Technol., 2016,286:72. https://linkinghub.elsevier.com/retrieve/pii/S0257897215304448

doi: 10.1016/j.surfcoat.2015.12.013
[65]
Suo L , Jiang N , Wang Y , Wang P Y , Chen J Y , Pei X B , Wang J , Wan Q B . J. Biomed. Mater. Res. Part B, 2019,107(3):635. http://doi.wiley.com/10.1002/jbm.b.v107.3

doi: 10.1002/jbm.b.v107.3
[66]
Zhang L , Liu W W , Yue C G , Zhang T H , Li P , Xing Z W , Chen Y . Carbon, 2013,61:105. fdbe4b15-61a6-4604-b0b8-daaff9ea4558 http://dx.doi.org/10.1016/j.carbon.2013.04.074

doi: 10.1016/j.carbon.2013.04.074
[67]
Siddiqui H A , Pickering K L , Mucalo M R . Materials, 2018,11(10):1813. http://www.mdpi.com/1996-1944/11/10/1813

doi: 10.3390/ma11101813
[68]
Sun L , Berndt C C , Gross K A , Kucuk A .J Biomed. Mater. Res., 2001,58(5):570. http://doi.wiley.com/10.1002/%28ISSN%291097-4636

doi: 10.1002/(ISSN)1097-4636
[69]
Yang Y Z , Kim K H , Ong J L . Biomaterials, 2005,26(3):327. c8564f01-358b-456c-849c-c9bcefa2d01a http://www.sciencedirect.com/science/article/pii/S014296120400167X

doi: 10.1016/j.biomaterials.2004.02.029
[70]
Mohseni E , Zalnezhad E , Bushroa A R. Int. J. Adhes. Adhes., 2014,48:238. e5985896-634b-466f-a28b-bcd5e268223b http://dx.doi.org/10.1016/j.ijadhadh.2013.09.030

doi: 10.1016/j.ijadhadh.2013.09.030
[71]
Yang Y C. Surf. Coat. Technol., 2007,201(16/17):7187. https://linkinghub.elsevier.com/retrieve/pii/S0257897207000485

doi: 10.1016/j.surfcoat.2007.01.027
[72]
Zheng X B , Xie Y T .J Inorg. Mater., 2013,28(1):12. lt;![CDATA[http://pub.chinasciencejournal.com/article/getArticleRedirect.action?doiCode=10.3724/SP.J.1077.2013.12329]]>

doi: 10.3724/SP.J.1077.2013.12329
[73]
Bsat S , Speirs A , Huang X .J Therm. Spray Technol., 2016,25(6):1088.
[74]
Liu L , Ni X Y , Xiong X B , Ma J , Zeng X R .J Alloys Compd., 2019,788:768.
[75]
Heimann R B. Surf. Coat. Technol., 2016,301:1.
[76]
Vilardell A M , Cinca N , Garcia-Giralt N , Dosta S , Cano I G , Nogués X , Guilemany J M. Mater. Sci. Eng. C-Mater. Biol. Appl., 2020,107:110306.
[77]
Gupta R , Kumar A . Biomed. Mater., 2008,3(3):034005.
[78]
Gardon M , Concustell A , Dosta S , Cinca N , Cano I G , Mater. Sci. Eng. C-Mater. Biol. Appl., 2014,45:117. https://linkinghub.elsevier.com/retrieve/pii/S0928493114005487

doi: 10.1016/j.msec.2014.08.053
[79]
Robertson S F , Bandyopadhyay A , Bose S. Surf. Coat. Technol., 2019,372:140. https://linkinghub.elsevier.com/retrieve/pii/S0257897219304487

doi: 10.1016/j.surfcoat.2019.04.071
[80]
Gross K A , Chai C S , Kannangara G S K, Ben-Nissan B, Hanley L. . J. Mater. Sci.-Mater. Med., 1998, 9(12):839. http://link.springer.com/10.1023/A:1008948228880

doi: 10.1023/A:1008948228880
[81]
Layrolle P , Ito A , Tateishi T . J Am. Ceram. Soc., 1998,81(6):1421. http://doi.wiley.com/10.1111/%28ISSN%291551-2916

doi: 10.1111/(ISSN)1551-2916
[82]
Hsieh M F , Perng L H , Chin T S , Perng H G . Biomaterials, 2001,22(19):2601. 59984540-0acf-4561-ad3d-40064a6b1432 http://www.sciencedirect.com/science/article/pii/S0142961200004488

doi: 10.1016/S0142-9612(00)00448-8
[83]
张文涛(Zhang W T) . 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2012.
[84]
Liu Y , Dang Z , Wang Y , Huang J , Li H . Carbon, 2014,67:250. https://linkinghub.elsevier.com/retrieve/pii/S0008622313009421

doi: 10.1016/j.carbon.2013.09.088
[85]
Lin Q X , Huang D , Du J J , Wei Y , Hu Y C , Lian X J , Xie X , Chen W Y , Zhang Y S. Appl. Surf. Sci., 2019,478:237. https://linkinghub.elsevier.com/retrieve/pii/S0169433219302570

doi: 10.1016/j.apsusc.2019.01.226
[86]
Bai L , Du Z B , Du J J , Yao W , Zhang J M , Weng Z M , Liu S , Zhao Y , Liu Y L , Zhang X Y , Huang X B , Yao X H , Crawford R , Hang R Q , Huang D , Tang B , Xiao Y . Biomaterials, 2018,162:154. https://linkinghub.elsevier.com/retrieve/pii/S0142961218300814

doi: 10.1016/j.biomaterials.2018.02.010
[87]
Tlotleng M , Akinlabi E , Shukla M , Pityana S .J Therm. Spray Technol., 2015,24(3):423. http://link.springer.com/10.1007/s11666-014-0199-6

doi: 10.1007/s11666-014-0199-6
[88]
Yao J H , Yang L J , Li B , Li Z H. Appl. Surf. Sci., 2015,330:300. https://linkinghub.elsevier.com/retrieve/pii/S0169433215000392

doi: 10.1016/j.apsusc.2015.01.029
[89]
Yang L J , Li Z X , Huang C L , Wang P , Yao J H . Materials Reports A, 2018,32(3):412.
[90]
Hahn B D , Lee J M , Park D S , Choi J J , Ryu J , Yoon W H , Choi J H , Lee B K , Kim J W , Kim H E , Kim S G . Thin Solid Films, 2011,519(22):8085. 4e870845-3263-4a7d-82a9-f847836c5dcf http://dx.doi.org/10.1016/j.tsf.2011.07.008

doi: 10.1016/j.tsf.2011.07.008
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[3] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[4] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[5] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.
[6] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[7] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[8] Xiangchun Tang, Jiaxiang Chen, Lina Liu, Shijun Liao. Pt-Based Electrocatalysts with Special Three-Dimensional Morphology or Nanostructure [J]. Progress in Chemistry, 2021, 33(7): 1238-1248.
[9] Song Jiang, Jiapei Wang, Hui Zhu, Qin Zhang, Ye Cong, Xuanke Li. Synthesis and Applications of Two-Dimensional V2C MXene [J]. Progress in Chemistry, 2021, 33(5): 740-751.
[10] Gaojie Yan, Qiong Wu, Linghua Tan. Design, Synthesis and Applications of Nitrogen-Rich Azole-Based Energetic Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 689-712.
[11] Qi Yang, Nanping Deng, Bowen Cheng, Weimin Kang. Gel Polymer Electrolytes in Lithium Batteries [J]. Progress in Chemistry, 2021, 33(12): 2270-2282.
[12] Huirong Peng, Molang Cai, Shuang Ma, Xiaoqiang Shi, Xuepeng Liu, Songyuan Dai. Fabrication and Stability of All-Inorganic Perovskite Solar Cells [J]. Progress in Chemistry, 2021, 33(1): 136-150.
[13] Meng Dan, Qing Cai, Jianglai Xiang, Junlian Li, Shan Yu, Ying Zhou. Metal Sulfide Semiconductors for Photocatalytic Hydrogen Production from Waste Hydrogen Sulfide [J]. Progress in Chemistry, 2020, 32(7): 917-926.
[14] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[15] Xiaohui Ma, Liqun Yang, Shijian Zheng, Qilin Dai, Cong Chen, Hongwei Song. All-Inorganic Perovskite Solar Cells: Status and Future [J]. Progress in Chemistry, 2020, 32(10): 1608-1632.