中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (10): 1341-1349 DOI: 10.7536/PC190322 Previous Articles   Next Articles

Actinide-Heterobimetal Compounds

Xiaowang Chi1,2, Qunyan Wu2, Jipan Yu2, Qin Zhang1,**(), Zhifang Chai2,3, Weiqun Shi2,**()   

  1. 1. College of Mining, Guizhou University, Guiyang 550025, China
    2. Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    3. Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Industrial Technology, Chinese Academy of Sciences, Ningbo 315201, China
  • Received: Online: Published:
  • Contact: Qin Zhang, Weiqun Shi
  • About author:
    ** E-mail: (Qin Zhang);
    (Weiqun Shi)
  • Supported by:
    National Natural Science Foundation of China(11875058); National Natural Science Foundation of China(U1867205); Project of High-Level Innovative Talents of Guizhou Province, China(黔科合人才[2015]4012号)
Richhtml ( 9 ) PDF ( 820 ) Cited
Export

EndNote

Ris

BibTeX

The study of organoactinide compounds has become one of the hot fields in organometallic chemistry, which are extremely challenging on synthesis and separation, and the potential application of actinide-heterobimetal compounds lie in catalysis and small molecule activation. With the deep understanding of unique electronic structure and properties of actinide compounds, some progress has been made in actinide-heterobimetal compounds. This review summarizes the research results of actinide-heterobimetal compounds in the past 30 years, including experimental and theoretical studies on actinide-transition metal and actinide-main group metal systems.

Fig. 1 Th-M(M=Ru, Ni, Pt) compounds[19, 21, 22]
Fig. 2 U-Re Compounds[23, 25, 26]
Fig. 3 U-Co Compound
Fig. 4 U-Ru compounds[28]
Fig. 5 U-Fe Compound[29]
Fig. 6 Th-Cu Compound[30]
Fig. 7 U-Co compounds[35]
Fig. 8 Synthesis of U/Th-Co compounds[34]. Copyright 2014, ACS.
Fig. 9 An-Mo compounds[37]
Fig. 10 U-Rh compound and its single crystal structure[38]. Copyright: WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig. 11 U-Ni compound[41]
Fig. 12 U-M(M=Sn, Al, Ga) compounds[42,43,44,45,46]
Fig. 13 U-Pn(Pn=P, As, Sb, Bi) and Th-Pn(Pn=P, As, Sb) compounds[47]
Fig. 14 Covalency in U-E(E=N, P, As, Sb, Bi) triple bonds[54]. Copyright 2015, ACS.
[1]
Kealy T J, Pauson P L . Nature, 1951,168:1039.
[2]
Wilkinson G, Rosenblum M, Whiting M C, Woodward R B . J. Am. Chem. Soc., 1952,74:2125.
[3]
Reynolds L T, Wilkinson G . J. Inorg. Nucl. Chem., 1956,2:246.
[4]
Halter D P, Heinemann F W, Bachmann J, Meyer K . Nature, 2016,530:317.
[5]
Halter D P, Heinemann F W, Maron L, Meyer K . Nat. Chem., 2017,10:259.
[6]
MacDonald M R, Fieser M E, Bates J E, Ziller J W, Furche F, Evans W J . J. Am. Chem. Soc., 2013,135:13310.
[7]
Langeslay R R, Fieser M E, Ziller J W, Furche F, Evans W J . Chem. Sci., 2015,6:517.
[8]
Windorff C J, Chen G P, Cross J N, Evans W J, Furche F, Gaunt A J, Janicke M T, Kozimor S A, Scott B L . J. Am. Chem. Soc., 2017,139:3970.
[9]
Su J, Windorff C J, Batista E R, Evans W J, Gaunt A J, Janicke M T, Kozimor S A, Scott B L, Woen D H, Yang P . J. Am. Chem. Soc., 2018,140:7425.
[10]
Billow B S, Livesay B N, Mokhtarzadeh C C, McCracken J, Shores M P, Boncella J M, Odom A L . J. Am. Chem. Soc., 2018,140:17369.
[11]
Cotton F A, Curtis N F, Harris C B, Johnson B F G, Lippard S J, Mague J T, Robinson W R, Wood J S . Science, 1964,145:1305.
[12]
Davidson P J, Lappert M F . J. Chem. Soc. Chem. Commun., 1973,317a.
[13]
Resa I, Carmona E, Gutierrez-Puebla E, Monge A . Science, 2004,305:1136.
[14]
Nguyen T, Sutton A D, Brynda M, Fettinger J C, Long G J, Power P P . Science, 2005,310:844.
[15]
Green S P, Jones C, Stasch A . Science, 2007,318:1754.
[16]
Berry J F, Lu C C . Inorg. Chem., 2017,56:7577.
[17]
Liddle S T . Molecular Metal-Metal Bonds: Compounds, Synthesis, Properties. John Wiley & Sons. 2015.
[18]
Bennett R L, Bruce M I, Stone F G A, . J. Organomet. Chem., 1971,26:355.
[19]
Sternal R S, Brock C P, Marks T J . J. Am. Chem. Soc., 1985,107:8270.
[20]
Sternal R S, Marks T J . Organometallics, 1987,6:2621.
[21]
Ritchey J M, Zozulin A J, Wrobleski D A, Ryan R R, Wasserman H J, Moody D C, Paine R T . J. Am. Chem. Soc., 1985,107:501.
[22]
Hay P J, Ryan R R, Salazar K V, Wrobleski D A, Sattelberger A P . J. Am. Chem. Soc., 1986,108:313.
[23]
Gardner B M, McMaster J, Lewis W, Liddle S T . Chem. Commun., 2009,17:2851.
[24]
Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S . Dalton Trans., 2008,21:2832.
[25]
Gardner B M, McMaster J, Moro F, Lewis W, Blake A J, Liddle S T, . Chem. Eur. J., 2011,17:6909.
[26]
Patel D, King D M, Gardner B M, McMaster J, Lewis W, Blake A J, Liddle S T . Chem. Commun., 2011,47:295.
[27]
Patel D, Moro F, McMaster J, Lewis W, Blake A J, Liddle S T . Angew. Chem. Int. Ed., 2011,50:10388.
[28]
Gardner B M, Patel D, Cornish A D, McMaster J, Lewis W, Blake A J, Liddle S T . Chem. Eur. J., 2011,17:11266.
[29]
Fortier S, Aguilarcalderón J R, Vlaisavljevich B, Mettamagaña A J, Goos A G, Botez C E . Organometallics, 2017,36:4591.
[30]
Yang P, Zhou E, Hou G, Zi G F, Ding W, Walter M D . Chem. Eur. J., 2016,22:13845.
[31]
Chi C, Wang J Q, Qu H, Li W L, Meng L, Luo M, Li J, Zhou M F . Angew. Chem. Int. Ed., 2017,129:7036.
[32]
Batsanov S S . Inorg. Mater., 2001,37:871.
[33]
Pyykkö P, Riedel S, Patzschke M . Chem. Eur. J., 2005,11:3511.
[34]
Ward A L, Lukens W W, Lu C C, Arnold J . J. Am. Chem. Soc., 2014,136:3647.
[35]
Napoline J W, Kraft S J, Matson E M, Fanwick P E, Bart S C, Thomas C M . Inorg. Chem., 2013,52:12170.
[36]
Hlina J A, Pankhurst J R, Kaltsoyannis N, Arnold P L . J. Am. Chem. Soc., 2016,138:3333.
[37]
Ayres A J, Zegke M, Ostrowski J P A, Tuna F, McInnes E J L, Wooles A J, Liddle S T . Chem. Commun., 2018,54:13515.
[38]
Lu E, Wooles A J, Gregson M, Cobb P J, Liddle S T . Angew. Chem. Int. Ed., 2018,57:6587.
[39]
Pyykkö P . J. Phys. Chem. A, 2015,119:2326.
[40]
Hlina J A, Wells J A L, Pankhurst J R, Love J B, Arnold P L . Dalton Trans., 2017,46:5540.
[41]
Feng G, Zhang M, Shao D, Wang X, Wang S, Maron L, Zhu C Q . Nat. Chem., 2019,11:248.
[42]
Porchia M, Casellato U, Ossola F, Rossetto G, Zanella P, Graziani R . J. Chem. Soc. Chem. Commun., 1986,1034.
[43]
Minasian S G, Krinsky J L, Williams V A, Arnold J . J. Am. Chem. Soc., 2008,130:10086.
[44]
Minasian S G, Krinsky J L, Rinehart J D, Copping R, Tyliszczak T, Janousch M, Shuh D K, Arnold J . J. Am. Chem. Soc., 2009,131:13767.
[45]
Liddle S T, McMaster J, Mills D P, Blake A J, Jones C, Woodul W D . Angew. Chem. Int. Ed., 2009,48:1077.
[46]
Winston M S, Batista E R, Yang P, Tondreau A M, Boncella J M . Inorg. Chem., 2016,55:5534.
[47]
Liddle S, Rookes T, Wildman E, Balazs G, Gardner B, Wooles A, Gregson M, Tuna F, Scheer M . Angew. Chem. Int. Ed., 2018,130:1332.
[48]
Seth M, Dolg M, Fulde P, Schwerdtfeger P . J. Am. Chem. Soc., 1995,117:6597.
[49]
Vlaisavljevich B, Miró P, Cramer C J, Gagliardi L, Infante I, Liddle S T . Chem. Eur. J., 2011,17:8424.
[50]
Cantero-López P, Le Bras L, Páez-Hernández D, Arratia-Perez R . Dalton Trans., 2015,44:20004.
[51]
Bi Y T, Li L, Guo Y R, Pan Q J . Inorg. Chem., 2019,58:1290.
[52]
Wu Q Y, Wang C Z, Lan J H, Xiao C L, Wang X K, Zhao Y L, Chai Z F, Shi W Q . Inorg. Chem., 2014,53:9607.
[53]
Wang C Z, Gibson J K, Lan J H, Wu Q Y, Zhao Y L, Li J, Chai Z F, Shi W Q . Dalton Trans., 2015,44:17045.
[54]
Wu Q Y, Lan J H, Wang C Z, Zhao Y L, Chai Z F, Shi W Q . J. Phys. Chem. A, 2015,119:922.
[55]
Wu Q Y, Lan J H, Wang C Z, Cheng Z P, Chai Z F, Gibson J K, Shi W Q . Dalton Trans., 2016,45:3102.
[56]
Wang C Z, Wu Q Y, Lan J H, Chai Z F, Gibson J K, Shi W Q . Radiochim. Acta, 2017,105:21.
[57]
Wu Q Y, Cheng Z P, Lan J H, Wang C Z, Chai Z F, Gibson J K, Shi W Q . Dalton Trans., 2018,47:12718.
[58]
Chi X W, Wu Q Y, Hao Q, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q . Organometallics, 2018,37:3678.
[59]
Chi X W, Wu Q Y, Lan J H, Wang C Z, Zhang Q, Chai Z F, Shi W Q . Organometallics, 2019,38:1963.
[60]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T . Science, 2012,337:717.
[61]
King D M, Tuna F, McInnes E J L, McMaster J, Lewis W, Blake A J, Liddle S T . Nat. Chem., 2013,5:482.
[62]
Lukens W W, Edelstein N M, Magnani N, Hayton T W, Fortier S, Seaman L A . J. Am. Chem. Soc., 2013,135:10742.
[63]
Kaltsoyannis N . Inorg. Chem., 2013,52:3407.
[64]
Neidig M L, Clark D L, Martin R L . Coordin. Chem. Rev., 2013,257:394.
[1] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[2] Yaqi Wang, Qiang Wu, Junling Chen, Feng Liang. Diels-Alder Reaction Catalyst [J]. Progress in Chemistry, 2022, 34(2): 474-486.
[3] Xiaoqiong Feng, Yunlong Ma, Hong Ning, Shiying Zhang, Changsheng An, Jinfeng Li. Transition Metal Chalcogenide Cathode Materials Applied in Aluminum-Ion Batteries [J]. Progress in Chemistry, 2022, 34(2): 319-327.
[4] Wei Zhang, Kang Xie, Yunhao Tang, Chuan Qin, Shan Cheng, Ying Ma. Application of Transition Metal Based MOF Materials in Selective Catalytic Reduction of Nitrogen Oxides [J]. Progress in Chemistry, 2022, 34(12): 2638-2650.
[5] Wendi Guo, Ye Liu. Carbonylation of Alkynes with Different Nucleophiles Catalyzed By Transition Metal Complexes [J]. Progress in Chemistry, 2021, 33(4): 512-523.
[6] Mengting Xu, Yanqing Wang, Ya Mao, Jingjuan Li, Zhidong Jiang, Xianxia Yuan. Cathode Catalysts for Non-Aqueous Lithium-Air Batteries [J]. Progress in Chemistry, 2021, 33(10): 1679-1692.
[7] Zhonggao Zhou, Yangyang Yuan, Guohai Xu, Zhengwang Chen, Mei Li. The Synthesis and Catalytic Activity of Sugar-Based NHCs and Their Transition Metal Complexes [J]. Progress in Chemistry, 2019, 31(2/3): 351-367.
[8] Lei Chen, Wen Zhao, Gangji Yi, Jianjun Zhou, Aihua Yua. Single-Ion Magnets Based on 3d Transition Metal [J]. Progress in Chemistry, 2019, 31(2/3): 337-350.
[9] Xianwei Lv, Zhongpan Hu, Hui Zhao, Yuping Liu, Zhongyong Yuan. Self-Supporting Transition Metal Phosphides as Electrocatalysts for Hydrogen Evolution Reaction [J]. Progress in Chemistry, 2018, 30(7): 947-957.
[10] Yu Zhang, Jinghe Cen, Wenfang Xiong, Chaorong Qi, Huanfeng Jiang*. CO2: C1 Synthon in Carboxylation Reactions [J]. Progress in Chemistry, 2018, 30(5): 547-563.
[11] Xiong Xingquan, Fan Guanming, Zhu Rongjun, Shi Lin, Xiao Shangyun, Bi Cheng. Highly Efficient Synthesis of Amides [J]. Progress in Chemistry, 2016, 28(4): 497-506.
[12] Chen Feng, Bai Ying, Li Jiayun*, Xiao Wenjun, Peng Jiajian*. The Application on Nitrogen-Coordinating Transition Metal Complexes on Hydrosilylation [J]. Progress in Chemistry, 2015, 27(7): 806-817.
[13] Chen Ruwen, Tu Xinman, Chen Dezhi. Transition Metal Nitrides for Lithium-Ion Batteries [J]. Progress in Chemistry, 2015, 27(4): 416-423.
[14] Wang Xue, Tan Chen, Li Yongqi, Zhang Heng, Liu Ye. Synthesis of Ionic Phosphines and Corresponding Ionic Transition Metal Complexes and Their Applications in Homogeneous Catalysis [J]. Progress in Chemistry, 2015, 27(1): 27-37.
[15] Liu Yuping, Xie Jian, Li Tingting, Deng Ling, Chen Changguo, Zhang Dingfei. Development of Mg-Transition Metal Complex as Cathode Materials [J]. Progress in Chemistry, 2014, 26(09): 1596-1608.
Viewed
Full text


Abstract

Actinide-Heterobimetal Compounds