中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 929-938 DOI: 10.7536/PC181205 Previous Articles   Next Articles

Olefin Polymerization with Nitrogen-Coordinated Half-Metallocene Catalyst Systems

Shuzhang Qu, Taoyi Zhang*(), Wei Wang*()   

  1. Beijing Research Institute of Chemical Industry(BRICI), SINOPec, Beijing 100013, China
  • Received: Online: Published:
  • Contact: Taoyi Zhang, Wei Wang
  • About author:
    * E-mail: (Taoyi Zhang)
Richhtml ( 12 ) PDF ( 577 ) Cited
Export

EndNote

Ris

BibTeX

The recent study of the half-metallocene compounds ligated with nitrogen-containing groups as catalysts for precise olefin polymerization has been reviewed in this article. Studies have found that these nitrogen-coordinated catalysts exhibit unique properties in the polymerization of olefin monomers, especially for the copolymerization of ethylene. These catalysts can not only obtain new copolymers, which cannot be synthesized by Ziegler-Natta catalysts and traditional metallocene catalysts, but also show the copolymerization activities superior to other half-metallocene catalysts. Modification of both cyclopentadienyl fragments and anionic ancillary donor ligands is the key for the improvement of polymerization behaviors. This article relates to the homopolymerization of ethylene and the copolymerization of ethylene with α-olefins(hexene-1, octene-1, etc.), styrene and cyclic olefins(norbornene, tetracyclododecene, etc).

Fig. 1 Half-metallocene with amino ligand
Table 1 Ethylene polymerization by 25~29[24][a]
Table 2 Ethylene-hexene-1 copolymerization by 25~29[24][a]
Table 3 Ethylene polymerization of 30~39[25]
Fig. 2 Half-metallocene with ketimide ligand
Fig. 3 Half-metallocene with phosphinimide ligand
Table 4 Comparison for ethylene-octene-1 copolymerization by 97, 98 and Cp*Ti[NP(tBu)3]C12[38][a]
Fig. 4 Half-metallocene with other types of N-containing ligand
[1]
Gladysz J A . Chem. Rev., 2000,100(4):1167.
[2]
Gibson V C, Spitzmesser S K . Chem. Rev., 2003,103(1):283.
[3]
Rodriguez-Delgado A, Chen E Y A . Macromolecules, 2005,38(7):2587.
[4]
Kaminsky W . Adv. Catal., 2001,46(02):89.
[5]
Klosin J, Fontaine P P, Figueroa R . Acc. Chem. Res., 2015,48(7):2004.
[6]
Collins R A, Russell A F, Mountford P . Appl. Petrochem. Res., 2015,5(3):153.
[7]
Alt H G, Koppl A . Chem. Rev., 2000,100(4):1205.
[8]
Nomura K, Liu J Y, Padmanabhan S, Kitiyanan B . J. Mol. Catal. A: Chem., 2007,267:1.
[9]
Makio H, Terao H, Iwashita A, Fujita T, . Chem. Rev., 2011,111:2363.
[10]
Ittel S D, Johnson L K, Brookhart M . Chem. Rev., 2000,100(4):1169.
[11]
McKnight A L, Waymouth R M . Chem. Rev., 2010,30(4):2587.
[12]
Nomura K, Naga N, Miki M, Yanagi K, Imai A . Organometallics, 1998,17(11):2152.
[13]
Stephan D W, Guérin F, Spence R E V H, Koch L, Gao X, Brown S J, Swabey J W, Wang Q, Xu W, Zoricak P, Harrison D G . Organometallics, 2000,18(11):2046.
[14]
Kretschmer W P, Dijkhuis C, Meetsma A, Hessen B, Teuben J H . Chem. Commun., 2002,114(6):608.
[15]
Zhang S, Piers W E, Gao X, Parvez M . J.Am. Chem. Soc., 2000,122(23):5499.
[16]
Jayaratne K C, Sita L R . J.Am. Chem. Soc., 2000,122(5):958.
[17]
Wang W, Zheng G, Wang H T . e-Polymers, 2014,14:277.
[18]
王伟(Wang W), 郑刚(Zheng G) . 化学进展 (Progress in Chemistry), 2009,21(4):677.
[19]
Rusli W, Tay B Y, Stubbs L P, Meurs M V, Tan J, Jacob C, Chia S C, Woo Y L, Wang C . J.Organomet. Chem., 2011,696(11):2414.
[20]
Dureen M A, Brown C C, Morton J G, Stephan D W . Dalton Trans., 2011,40(12):2861.
[21]
Rajesh A, Sivaram S . Polymer. Eng. Sci., 2011,51(10):2103.
[22]
米普科(Mi P K), 孔晓娟(Kong X J), 许胜(Xu S), 朱玉玲(Zhu Y L), 任迎春(Ren Y C) . 分子催化 (Journal of Molecular Catalysis(China)), 2012,26(6):493.
[23]
Nomura K, Fujii K . Macromolecules, 2003,36(8):2633.
[24]
Liu, K, Wu Qn, Gao W, Mu Y, Ye L . WEur. J. Inorg. Chem., 2011(12):1901.
[25]
Saeed I, Katao S, Nomura K . Organometallics, 2009,28(1):111.
[26]
Narayana G V, Xu G, Wang D, Frey W, Buchmeiser M R . ChemPlusChem, 2014,79(1):151.
[27]
Narayana G V, Xu G, Wang D, Speiser M, Frey W, Buchmeiser M R . Macromol. Chem. Phys., 2014,215(20):2007.
[28]
Xu G, Narayana G V, Speiser M, Wang D, Zhou Y L, Buchmeiser M R . Macromol. Chem. Phys., 2014,215(9):893.
[29]
Park J H, Do S H, Cyriac A, Yun H, Lee B Y . Dalton Trans., 2010,39(41):9994.
[30]
Kim S H, Park J H, Song B G, Yoon S W, Go M J, Lee J S, Lee B Y . Catalysts, 2013,3:104.
[31]
Dias A R, Duarte M T, Fernandes A C, Fernandes S, Marques M M, Martins A M, Silva J F, Rodrigues S S . J.Organomet. Chem., 2004,689(1):203.
[32]
Nomura K, Fujita K, Fujiki M . J. Mol. Catal. A, 2004,220(2):133.
[33]
Nomura K, Yamada J, Wang W, Liu J . J.Organomet. Chem., 2007,692(21):4675.
[34]
Itagaki K, Nomura K . Macromolecules, 2009,42(14):5097.
[35]
Nomura K, Kakinuki K, Fujiki M, Itagaki K . Macromolecules, 2008,41(23):8974.
[36]
Zhao W, Nomura K . Macromolecules, 2016,49(1):59.
[37]
Zhang H, Nomura K . J.Am. Chem. Soc., 2005,127(26):9364. https://www.ncbi.nlm.nih.gov/pubmed/15984852

doi: 10.1021/ja052198z pmid: 15984852
[38]
Park E S, Ji H P, Yun H, Lee B Y . J.Organomet. Chem., 2011,696(11):2451.
[39]
Nomura K, Fukuda H, Katao S, Fujiki M, Kim H J, Kim DH, Zhang S . Dalton Trans., 2011,40(31):7842.
[40]
Nomura K, Fukuda H, Apisuk W, Trambitas A J, Kitiyanan B, Tamm M . J. Mol. Catal. A., 2012, 363-364(12):501.
[41]
Nomura K, Fukuda H, Matsuda H, Katao S, Patamma S . J.Organomet. Chem., 2015,798:375.
[42]
Nomura K, Patamma S, Matsuda H, Katao S, Tsutsumia K, Fukudab H . RSC Adv., 2015,5(79):64503.
[43]
Apisuk W, Trambitas A G, Kitiyanan B, Tamm M, Nomura K . J. Polym. Sci. A, 2013,51(12):2575.
[44]
Apisuk W, Ito H, Nomura K . J. Polym. Sci. A, 2016,54(17):2662.
[45]
Stelzig S H, Tamm M, Waymouth R M . J. Polym. Sci. A, 2008,46(18):6064.
[46]
Ijpeij E G, Coussens B, Zuideveld M A, Doremaele GH, Mountford P, Lutz M, Spek AL . Chem. Commun., 2010,46(19):3339.
[47]
Collins R A, Russell A F, Scott R T W, Bernardoet R, Doremaele G H J, Berthoud A, Mountford P . Organometallics, 2017,36:2167.
[48]
Varga V, Večeča M, Gyepes R, Pinkas J, Horáček M, Merna J, Lamač M . Chemcatchem, 2017,9(16):3270.
[49]
Stephan D W, Stewart J C, Guérin F, Spence R E H, Xu W, Harrison D G . Organometallics, 1999,18(7):1116.
[50]
Spence R E H, Stephan D W, Brown S J, Wurz R P, Jeremic D . US 6355744, 2000.
[51]
Carraz C A, Stephan D W . Organometallics, 2000,19(19):3791.
[52]
Yue N L S, Stephan D W . Organometallics, 2001,20(11):2303.
[53]
Stephan D W, Stewart J C, Guérin F, Courtenay S, Kickham J, Hollink E, Beddie C, Hoskin A, Graham T, Wei PR, Spence R E H, Xu W, Koch L, Gao X L, Harrison D G . Organometallics, 2003,22(9):1937.
[54]
Hollink E, Wei P, Stephan D W . Organometallics, 2004,23(7):1562.
[55]
Alhomaidan O, Bai G, Stephan D W . Organometallics, 2008,27(27):6343.
[56]
Ramos A, Stephan D W . Dalton Trans., 2010,39(5):1328.
[57]
Yadav K, McCahill J S, Bai G, Stephan D W . Dalton Trans, 2009,9(9):1636.
[58]
Hollink E, Wei P, Stephan D W . Can. J. Chem., 2004,82(8):1304.
[59]
Beddie C, Wei P, Stephan D W . Can. J. Chem., 2006,84(5):755.
[60]
Huang J L, Lian B, Qian Y L, Zhou W Z, Chen W, Zheng G . Macromolecules, 2002,35(13):4871.
[61]
Yan Q, Yang W H, Chen L Q, Wang L, Redshaw C, Sun W H . J.Organomet. Chem., 2014,753(1):34.
[62]
Huang W, Sun W H, Redshaw C . Dalton Trans., 2011,40(25):6802.
[63]
Huang W, Li B X, Wang Y H, Zhang W J, Wang L, Li Y S, Sun W H, Redshaw C . Catal. Sci. Technol., 2011,1:1208.
[64]
Huang W, Zhang W J, Sun W H, Wang L, Redshaw C . Catal. Sci. Technol., 2012,2(10):2090.
[65]
Zuo W W, Zhang M, Sun W H . J. Polym. Sci. A, 2009,47(2):357.
[66]
Liu S R, Li B X, Liu J Y, Li Y S . Polymer, 2010,51(9):1921.
[67]
Shi X C, Jin G X . Dalton Trans., 2011,40(44):11914.
[68]
Qiao Y L, Hu P, Jin G X . Chinese J. Polym. Sci., 2013,31(5):760.
[69]
Larocque T G, Dastgir S, Lavoie G G . Organometallics, 2013,32(15):4314.
[70]
Bott R K J, Hughes D L, Bochmann M, Schormann M, Lancaster S . J.Organomet. Chem., 2003,665(1/2):135.
[71]
Chen Q H, Huang J L, Yu J . Inorg. Chem. Commun., 2005,8(5):444.
[72]
Coles S R, Clarkson G J, Gott A L, Munslow L J, Spitzmesser S K, Scott P . Organometallics, 2006,25(26):6019.
[73]
Zhang J, Lin Y J, Jin G X . Organometallics, 2007,26(16):4042.
[74]
Zhang H, Katao S, Nomura K, Huang J L . Organometallics, 2007,26(24):5967.
[75]
Zuo W W, Zhang S, Sun W H . J. Polym. Sci. A, 2008,46(10):3396.
[76]
Zhang W J, Huang W, Liang T L, Sun W H . Chinese J. Polym. Sci., 2013,31(4):601.
[77]
Zhang Q, Tao X, Gao W, Song T T, Mu Y . J.Organomet. Chem., 2016,804:18.
[78]
Qi C H, Zhang S B, Sun J H . J.Organomet. Chem., 2005,690(12):2941.
[79]
Dove A P, Xie X, Waymouth R M . Chem. Commun., 2005,( 16):2152.
[80]
Dove A P, Kiesewetter E T, Ottenwaelder X, Waymouth R M . Organometallics, 2009,28(2):405.
[81]
Liu S, Sun W H, Zeng Y, Wang D, Zhang W J, Li Y . Organometallics, 2010,29(11):2459.
[82]
Harkness M B, Alvarado E, Badaj A C, Skrela B C, Fan L, Lavoie G G . Organometallics, 2013,32(11):3309.
[83]
Nomura K, Fukuda H, Katao S, Fujiki M, Kim H J, Kim D H, Saeed I . Macromolecules, 2011,44(7):1986.
[1] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[2] Shifang Yuan, Lijing Wang, Qiuyue Zhang, Wenhua Sun. Tridentate Titanium Precatalysts Toward Olefin Polymerization [J]. Progress in Chemistry, 2017, 29(12): 1462-1470.
[3] Yuan Shifang, Niu Chunxia, Wei Xuehong, Sun Wenhua. ⅣB-Metal Complex Catalysts toward Olefin Polymerization and Copolymerization [J]. Progress in Chemistry, 2016, 28(7): 1070-1075.
[4] Wang Kui, Lei Jinhua*, Nie Heran, Zhou Guangyuan*. Olefin Polymerization in Confined Space [J]. Progress in Chemistry, 2015, 27(12): 1764-1773.
[5] .  Catalysts Used in Addition Copolymerization of Ethylene and Norbornene [J]. Progress in Chemistry, 2010, 22(10): 2024-2032.
[6] . Olefin Polymerization with Half-Metallocene Catalyst Systems [J]. Progress in Chemistry, 2009, 21(04): 677-686.
[7]

Yu Nan1,2 Hou Zhaomin2** Xi Zhenfeng1**

. Cationic Complexes of Rare Earth Metals [J]. Progress in Chemistry, 2008, 20(10): 1515-1524.
[8] Chen Hui, Ma Huiru, Guan Jianguo**. Preparation of Water-Soluble Conducting Polyanilines [J]. Progress in Chemistry, 2007, 19(11): 1770-1775.
[9] Huiwu Wang Yanming Dong Yaqing Zhao . Advance of Graft Copolymerization onto Chitin and Chitosan [J]. Progress in Chemistry, 2006, 18(05): 601-608.
[10] Jiesheng Tian,Jinquan Wang,Ya Du,Liangnian He**. Copolymerization of Carbon Dioxide with 1,2-Epoxides [J]. Progress in Chemistry, 2006, 18(01): 74-79.
[11] Xiao Linfei,Li Fuwei,Xia Chungu**. Preparation of Polycarbonate Directly from Carbon Dioxide and Epoxides [J]. Progress in Chemistry, 2005, 17(04): 706-715.
[12] Chen Liyi,Yang Haijian,Sun Wenhua**. Advances of Olefin Polymerization in Aqueous Solutions [J]. Progress in Chemistry, 2003, 15(05): 401-.
[13] Shen Haoyu,Jin Guoxin**. New Type Late Transition Metal Catalysts for Olefin Polymerization ——Nickel-based Olefin Polymerization Catalysts [J]. Progress in Chemistry, 2003, 15(01): 60-.
[14] Wang Mei,Qian Mingxing,He Ren. Catalysis of Multi-Nitrogen Chelated Late-Transition-Metal Complexes for Olefin Polymerization [J]. Progress in Chemistry, 2001, 13(02): 102-.
[15] Zhang Puyu,Wang Li,Feng Linxian. Progress in the Metallocene Borane Catalytic System for Olefin Polymerization [J]. Progress in Chemistry, 2001, 13(02): 108-.