中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (7): 969-979 DOI: 10.7536/PC181109 Previous Articles   Next Articles

Polyelectrolyte-Based Draw Solution in Forward Osmosis

Saihui Zhan1,3,4,**(), Yue Wang2,3, Kaipeng Liu1,3,4, Jie Wang2,3   

  1. 1.School of Chemistry and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    2.School of Environmental Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China
    3.State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Polytechnic University, Tianjin 300387, China
    4.Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, Tianjin 300387, China
  • Received: Online: Published:
  • Contact: Saihui Zhan
  • Supported by:
    National Natural Science Foundation of China(21104034); Scientific Research Project of Tianjin Education Commission(2017KJ078); State Key Laboratory of Separation Membranes and Membrane Processes(Tianjin Polytechnic University)(Z2-2015062); Student’s Platform for Innovation and Entrepreneurship Training Program(201510058031)
Richhtml ( 3 ) PDF ( 387 ) Cited
Export

EndNote

Ris

BibTeX

Polyelectrolyte-based draw solution(PBDS) exhibit high osmotic pressure, and low reverse solute leakage, which are highly demanded in forward osmosis process. Additionally, various separation methods such as nanofiltration, ultrafiltration and thermal treatment can be utilized for its recycle, rendering PBDS an ideal substitute for the traditional inorganic draw solution such as sodium chloride. In the past two decades, research works concerning PBDS have been intensively reported. Because PBDS has distinctive properties in comparison with inorganic draw solution, thus, it is necessary to review these developments in PBDS and present an outline. This paper aims to review the recent developments in PBDS in consideration of their chemical structures, which are categorized into carboxylate type, sulfonate type, amine type and amide type. In the beginning, the general considerations for an ideal PBDS are introduced. Subsequently, the molecular weight of the polyelectrolytes, the osmotic pressure and viscosity of the draw solutions, the water flux and reverse solute leakage in forward osmosis process are introduced in detail. The corresponding mechanisms of forward osmosis are also described. Finally, the characteristics, advantages and drawbacks of the PBDS are summarized, and the opportunities and challenges are discussed.

Fig. 1 Schematic illustration of forward osmosis
Fig. 2 Molecular structures of:(a) PAA-Na[34];(b) PAspNa[44]
Fig. 3 Molecular structures of:(a) PESA[48];(b) PIAM-Na[49]
Fig. 4 Molecular structure of:(a) PMAS;(b) P(IA-co-AA)[50]
Fig. 5 Molecular structures of:(a) PSSP[54];(b) PBET[58]
Fig. 6 Molecular structure of the:(a) PSS-co-MA[59];(b) PSS-co-AA[60]
Fig. 7 Molecular structure of PEI[67]
Fig. 8 Molecular structures of:(a) CASSs[68];(b) DTPMP-Na/TPHMP-Na[71];(c) PEI-600P/1800P -Na[71]
Fig. 9 Molecular structures of:(a) PNIPAM-SA(AA)[83, 85];(b) PSSS-PNIPAM[86]
Table 1 Properties of polyelectrolyte-based draw solution
Category
of the
polyelectrolytes
Polyelectrolyte(Mw-Da) Concentration(g/mL) Osmotic pressure
or Osmolality
(bar or
mOsmol/kg)
Viscosity(cP) Waterflux(LMH) Reverse solute
flux(gMH)
Advantages Drawbacks ref
Carboxylate type PAA-Na(1800) 0.72 ~54 bar 127 ~19 ~1.2 Commercial available High viscosity 34
PAspNa(1313) 0.30 2150
mOsmol/kg
4.4 31.8 - Non-toxic; - 44
PESA(400~1500) 0.20 1250
mOsmol/kg
~2.2 15.4 3.19 Degradable - 48
PIAM-Na(5919) 0.375 ~2000
mOsmol/kg
~32 34 - Low leakage High viscosity 49
PMAS(559) ~0.28 143 bar ~10 30.6 ~0.9 High osmotic
pressure
High viscosity 50
P(IA-co-AA)
(533)
~0.267 ~57 bar ~30 27 0.68 Low leakage - 50
PAMAM-COONa(~2806) 0.333 3603
mOsmol/kg
9.16 29.7 7.5 Low leakage High reverse solute flux 51
Sulfonate type PSS(70 000) 0.24 - ~19 18.2 ~5.5 High water flux High reverse solute flux 52
PSSP(4700) 0.20 ~15 bar 12.62 14.50 0.14 Thermo-sensitive - 54
PBET(18 000) 0.20 898
mOsmol/kg
17.69 3.22 0.36 Thermo-sensitive Low water flux 58
PSS-co-MA-Na-1(20 000) 0.25 32.8±0.89 bar 5.89 15 0.04 Low leakage 59
PSS-co-AA
(96 308)
0.18 ~23 bar 5.4 11.77 0.1 Low leakage 60
Amine type PEI(800) 0.05 125.7
mOsmol/kg
0.62 ~1.2 0.01 Low leakage Low osmotic
presure at
high pH value
66
PEI(1200) 0.05 88.3 mOsmol/kg 0.75 ~0.75 0.05 66
PEI(25 000) 0.10 ~7 bar 1.93 24 0.7~1.0 67
TTHP-4Na
(666.21)
0.50 ~165 bar ~7 23.07 0.75 High osmotic
pressure
- 68
TPHMP-Na 0.05 ~105 bar ~17 54 0.83 High water flux High viscosity 71
ETAC-starch 0.3 11.91 bar 118.0 4.1 1.62 Low reverse
flux
Low water flux 72
Amide type PAM(3 000 000) 0.30 544
mOsmol/kg
244.7 ~5 1.5 Stable water flux High viscosity 73
4%PNIPAM-SA 0.40 ~2 bar - 0.347 - Thermo-sensitive Low water flux 83
PNSA-10(3530) 0.38 7.2 bar 59.8 2.95 - Thermo-sensitive High viscosity 85
PSSS-PNIPAM
(3500)
0.333 2137
mOsmol/kg
68 4.0 2 Thermo-sensitive High viscosity 86
[1]
Cath T, Childress A, Elimelech M . J.Membr. Sci., 2006,281:70.
[2]
Zhao S, Zou L, Tang C Y, Mulcahy D . J.Membr. Sci., 2012,396:1.
[3]
Mi B, Elimelech M . J.Membr. Sci., 2008,320:292.
[4]
Shaffer D L, Werber J R, Jaramillo H, Lin S, Elimelech M . Desalination, 2015,356:271.
[5]
Xu W, Ge Q . Rev. Chem. Eng., 2018,0:1.
[6]
Johnson D J, Suwaileh W A, Mohammed A W, Hilal N . Desalination, 2018,434:100.
[7]
唐媛媛(Tang Y Y), 徐佳(Xu J), 陈幸(Chen X), 高从堦(Gao C J) . 化学进展 (Progress in Chemistry), 2015,27(7):818.
[8]
Holloway R W, Childress A E, Dennett K E, Cath T Y . Water Res., 2007,41:4005.
[9]
Achilli A, Cath T Y, Childress A E . J.Membr. Sci., 2010,364:233.
[10]
Hau N T, Chen S S, Nguyen N C, Huang K Z, Ngo H H, Guo W . J.Membr. Sci., 2014,455:305.
[11]
Yen S K, Mehnas Haja N F, Su M, Wang K Y, Chung T S . J. Membr. Sci., 2010,364:242.
[12]
McCutcheon J R, McGinnis R L, Elimelech M . Desalination, 2005,174:1.
[13]
高婷婷(Gao T T), 解利昕(Xie L X), 徐世昌(Xue S C), 冯丽媛(Feng L Y), 杜亚威(Du Y W),周晓凯(Zhou X K) . 化工进展 (Chemical Industry and Engineering Progress), 2017,36(6):2051.
[14]
Li D, Zhang X, Yao J, Simon G P, Wang H . Chem. Commun.(Camb) 2011,47:1710.
[15]
Li D, Wang H . J. Mater. Chem. A., 2013,1:14049.
[16]
Ling M M, Wang K Y, Chung T S . Ind. Eng. Chem. Res., 2010,49:5869.
[17]
Ge Q, Su J, Chung T S, Amy G . Ind. Eng. Chem. Res., 2010,50:382.
[18]
Ling M M, Chung T S . Desalination, 2011,278:194.
[19]
Cai Y, Hu X M . Desalination, 2016,391:16.
[20]
Klaysom C, Cath T Y, Depuydt T, Vankelecom I F . Chem. Soc. Rev., 2013,42:6959.
[21]
Zhao S, Zou L . J.Membr. Sci., 2011,379:459.
[22]
Sweeney T E, Beuchat C A . Am. J. Physiol., 1993,264:469.
[23]
Kiyosawa K . Biophys. Chem., 2003,104:171.
[24]
Chahine N O, Chen F H, Hung C T, Ateshian G A . Biophys. J., 2005,89:1543.
[25]
Grattoni A, Canavese G, Montevecchi F M, Ferrari M . Anal. Chem., 2008,80:2617.
[26]
Ge Q, Ling M, Chung T S . J.Membr. Sci., 2013,442:225.
[27]
谢朋(Xie P), 张忠国(Zhang Z G), 孙涛(Sun T), 吴月(Wu Y), 吴秋燕(Wu Q Y), 李继定(Li J D), 李珊(Li S) . 化工进展 (Chemical Industry and Engineering Progress), 2015,34(10):3540.
[28]
Yang Q, Wang K Y, Chung T S . Sep. Purif. Technol., 2009,69:269.
[29]
Klaysom C, Cath T Y, Depuydt T, Vankelecom I F J . Chem. Soc. Rev., 2013,42:6959. https://www.ncbi.nlm.nih.gov/pubmed/23778699

doi: 10.1039/c3cs60051c pmid: 23778699
[30]
Yong J S, Phillip W A, Elimelech M . J. Membr. Sci., 2012,392/393:9.
[31]
Yangali-Quintanilla V, Li Z, Valladares R, Li Q, Amy G . Desalination, 2011,280:160.
[32]
Tan C H, Ng H Y . Desalin. Water. Treat., 2010,13:356.
[33]
Ling M M, Chung T S . Desalination, 2011,278:194.
[34]
Ge Q, Su J, Amy G L, Chung T S . Water Res., 2012,46:1318.
[35]
Wang K Y, Teoh M M, Nugroho A, Chung T S . Chem. Eng. Sci., 2011,66:2421.
[36]
McGinnis R L, McCutcheon J R, Elimelech M . J.Membr. Sci., 2007,305:13.
[37]
李轻轻(Li Q Q), 马伟芳(Ma W F), 聂超(Nie C), 严玉林(Yan Y L) . 环境工程 (Environmental Engineering), 2016,34(3):11.
[38]
李洁(Li J), 王军(Wang J), 白羽(Bai Y), 李国亮(Li G L), 侯得印(Hou D Y), 栾兆坤(Luan Z K) . 水处理技术 (Technology of Water Treatment), 2014,1(1):16.
[39]
Phuntsho S, Shon H K, Hong S, Lee S, Vigneswaran S . J.Membr. Sci., 2011,375:172.
[40]
Peng W, Escobar I C . Environ. Sci. Technol., 2003,37:4435.
[41]
Wang X L, Tsuru T, Nakao S I, Kimura S . J.Membr. Sci., 1997,135:19.
[42]
Verliefde A R D, Cornelissen E R, Heijman S G J, Hoek E M V, Amy G L, Bruggen B V D, Dijk J C V . Environ. Sci. Technol., 2009,43:2400.
[43]
Ge Q, Wang P, Wan C, Chung T S . Environ. Sci. Technol., 2012,46:6236.
[44]
Gwak G, Jung B, Han S, Hong S . Water Res., 2015,80:294.
[45]
Ramachandran S, Katha A R, Kolake S M, Jung B, Han S . J. Phys. Chem. B, 2013,117:13906.
[46]
Vlachy V . Pure Appl. Chem., 2008,80:1253.
[47]
He F, Sirkar K K, Gilron J . J.Membr. Sci., 2009,345:53.
[48]
Wang C, Gao B, Zhao P, Li R, Yue Q, Shon H K . RSC Advances, 2017,7:30687.
[49]
Kumar R, Al-Haddad S, Al-Rughaib M, Salman M . Desalination, 2016,394:148.
[50]
Long Q, Huang J, Xiong S, Shen L, Wang Y . Chem. Eng. Res. Des., 2018,138:77.
[51]
Zhao D, Chen S, Wang P, Zhao Q, Lu X . Ind. Eng. Chem. Res., 2014,53:16170.
[52]
Tian E L, Hu C, Qin Y, Ren Y, Wang X, Wang X, Xiao P, Yang X . Desalination, 2015,360:130.
[53]
Qi S, Li Y, Wang R, Tang C Y . J.Membr. Sci., 2016,498:67.
[54]
Kim J, Kang H, Choi Y-S, Yu Y A, Lee J C . Desalination, 2016,381:84.
[55]
Kohno Y, Ohno H . Phys. Chem. Chem. Phys., 2012,14:5063.
[56]
Lord R . Postgrad. Med. J., 1999,75:67.
[57]
Hancock N T, Cath T Y . Environ. Sci. Technol., 2009,43:6769.
[58]
Ju C, Kang H . RSC Advances, 2017,7:56426.
[59]
Huang J, Long Q, Xiong S, Shen L, Wang Y . Desalination, 2017,421:40.
[60]
Cui H, Zhang H, Jiang W, Yang F . Environ. Sci. Pollut. Res. Int., 2018,25:5752.
[61]
杨晶(Yang J), 李玉平(Li Y P), 李海波(Li H B), 曹宏斌(Cao H B), 张懿(Zhang Y) . 过程工程学报 (The Chinese Journal of Process Engineering), 2014,14(3):395.
[62]
Chen D P, Yu C, Chang C Y, Wan Y, Frechet J M, Goddard W A, 3rd, Diallo M S . Environ. Sci. Technol., 2012,46:10718.
[63]
Park S J, Cheedrala R K, Diallo M S, Kim C, Kim I S, Goddard W A . J.Nanopart. Res., 2012,884:1.
[64]
Rao Kotte M, Hwang T, Han J I, Diallo M S . J.Membr. Sci., 2015,474:277.
[65]
Hobson L J, Feast W J . Polymer, 1999,40:1279.
[66]
Jun B M, Nguyen T P N, Ahn S H, Kim I C, Kwon Y N . J. Appl. Polym. Sci., 2015,132:1. https://www.ncbi.nlm.nih.gov/pubmed/25866416

doi: 10.1002/app.41437 pmid: 25866416
[67]
Cho M, Lee S H, Lee D, Chen D P, Kim I C, Diallo M S . J.Membr. Sci., 2016,511:278.
[68]
Long Q, Wang Y . AlChE J., 2016,62:1226.
[69]
Long Q, Wang Y . Energies, 2015,8:12917.
[70]
Long Q, Qi G, Wang Y . AlChE J., 2015,61:1309.
[71]
Long Q, Shen L, Chen R, Huang J, Xiong S, Wang Y . Environ. Sci. Technol., 2016,50:12022.
[72]
Laohaprapanon S, Fu Y J, Hu C C, You S J, Tsai H A, Hung W S, Lee K R, Lai J Y . Desalination, 2017,421:72.
[73]
Zhao P, Gao B, Xu S, Kong J, Ma D, Shon H K, Yue Q, Liu P . Chem. Eng. J., 2015,264:32.
[74]
Boo C, Lee S, Elimelech M, Meng Z, Hong S . J. Membr. Sci., 2012,390/391:277.
[75]
Chung T S, Li X, Ong R C, Ge Q, Wang H, Han G . Curr. Opin. Chem. Eng., 2012,1:246.
[76]
Zhao P, Gao B, Yue Q, Kong J, Shon H K, Liu P, Gao Y . Chem. Eng. J., 2015,273:316.
[77]
Sarp S, Lee S, Park K, Park M, Kim J H, Cho J . Desalin. Water. Treat., 2012,43:131.
[78]
Kim J, Chung J S, Kang H, Yu Y A, Choi W J, Kim H J, Lee J C . Macromol. Res., 2014,22:963.
[79]
Lessard D G, Ousalem M, Zhu X X . Can. J. Chem., 2001,79:1870.
[80]
Razmjou A, Simon G P, Wang H . Chem. Eng. J., 2013,215/216:913.
[81]
王泠沄(Wang L Y), 马兰(Ma L), 栗丽(Li L), 陈宗南(Chen Z N) . 环境科学与技术 (Environmental Science & Technology), 2016,39(1):143.
[82]
杨晶(Yang J), 于广民(Yu G M), 李玉平(Li Y P), 曹宏斌(Cao H B), 张懿(Zhang Y) . 现代化工 (Modern Chemical Industry), 2014,34(8):31.
[83]
Ou R, Wang Y, Wang H, Xu T . Desalination, 2013,318:48.
[84]
Xie R, Li Y, Chu L Y . J.Membr. Sci., 2007,289:76.
[85]
Wang Y, Yu H, Xie R, Zhao K, Ju X, Wang W, Liu Z, Chu L . Chin. J. Chem. Eng., 2016,24:86.
[86]
Zhao D, Wang P, Zhao Q, Chen N, Lu X . Desalination, 2014,348:26.
[1] Xu Jia, Tang Yuanyuan, Gao Congjie. Research Progress on Optimizing the Structure of Support Layers in Forward Osmosis Membrane [J]. Progress in Chemistry, 2015, 27(8): 1025-1032.
[2] Tang Yuanyuan, Xu Jia, Chen Xing, Gao Congjie. Core of Forward Osmosis for Desalination——Forward Osmosis Membrane [J]. Progress in Chemistry, 2015, 27(7): 818-830.
[3] Xiong Lina, Zhang Xueqin, Sun Ying, Yang Hong. Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers [J]. Progress in Chemistry, 2015, 27(12): 1774-1783.
[4] Dong Hang, Zhang Lin, Chen Huanlin, Gao Congjie. Mixed-Matrix Membranes for Water Treatment:Materials, Synthesis and Properties [J]. Progress in Chemistry, 2014, 26(12): 2007-2018.
[5] He Xiaoyan*, Zhou Wenrui, Xu Xiaojun, Yang Wu*. Preparation and Application of Zwitterionic Polymers [J]. Progress in Chemistry, 2013, 25(06): 1023-1030.
[6] Yin Mingjie, An Quanfu, Qian Jinwen, Zhang Aping. Preparation and Application of Fiber-Optic Sensors Based on Layer-by-Layer Self-Assembly Multilayers [J]. Progress in Chemistry, 2011, 23(12): 2568-2575.
[7] wang lingyun derong cao. Detection of Biological Molecule Based on Fluorescent Conjugated Polyelectrolytes [J]. Progress in Chemistry, 2010, 22(05): 905-915.
[8] . Forward Osmosis and Concentration Polarization [J]. Progress in Chemistry, 2010, 22(05): 812-821.
[9] Ji Yanli An Quanfu Qian Jinwen Chen Huanlin Gao Congjie. Nanofiltration Membranes Prepared by Layer-by-Layer Self-Assembly of Polyelectrolyte [J]. Progress in Chemistry, 2010, 22(01): 119-124.
[10] Liu Xiudong1,2|Yu Weiting1|Wang Wei1|Xiong Ying1|Ma Xiaojun1** |Yuan Quan1. Polyelectrolyte Microcapsules Prepared by Alginate and Chitosan for Biomedical Application [J]. Progress in Chemistry, 2008, 20(01): 126-139.
[11] Shang Jing,Chen Xin**,Shao Zhengzhong. The Electric-Field-Sensitive Hydrogels [J]. Progress in Chemistry, 2007, 19(9): 1393-1399.
[12] Cui Zheng,Xiang Yan**,Zhang Tao. Chitosan-Based Solid Polyelectrolyte Membranes for Cell Application [J]. Progress in Chemistry, 2007, 19(04): 583-589.
[13] Tian Binghui**|Pan Gang|Luan Zhaokun. Chemical Characteristics of Enhanced Flocculation Removal of Organic Pollutants by Cationic Polyelectrolytes [J]. Progress in Chemistry, 2007, 19(0203): 205-211.
[14] Lijing Xuan,Jinwen Qian**,Youfang Chen,Peng Zhang. Preparation of Self-Assembled Polyelectrolyte Multilayer Membrane and Their Applications in Membrane Separation [J]. Progress in Chemistry, 2006, 18(0708): 950-956.
[15] Qiang Yang1, Li Wang1**, Weidong Xiang2, Chiliang Wang1, Junfeng Zhou1. Stabilization and Its Mechanisms of the Metal Nanoparticles/Polymer Systems [J]. Progress in Chemistry, 2006, 18(0203): 290-297.