中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (6): 906-928 DOI: 10.7536/PC181005 Previous Articles   

Boron-Containing Organic Light-Emitting Diodes: Materials and Devices

Zhiwen Yang1, Yingying Zhan1, Shaomin Ji1,2, Qingdan Yang1, Qi Li1, Yanping Huo1,2,*()   

  1. 1.School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
    2.Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Received: Online: Published:
  • Contact: Yanping Huo
  • About author:
  • Supported by:
    National Natural Science Foundation of China(61671162); Technology Plan of Guangdong Province(2016A010103031); Key Project of Educational Commission of Guangdong Province, China(2017KZDXM025)
Richhtml ( 54 ) PDF ( 1289 ) Cited
Export

EndNote

Ris

BibTeX

Due to its unique valence electron distribution characteristics that the number of valence electron is less than the number of valence orbital, boron has an empty p orbit. It makes its tri-coordinated compounds can be effectively conjugated with the adjacent π system, and also can easily complex with the Lewis base to form a tetra-coordinated compound. The introduction of boron into traditional photoelectric functional molecules always brings unique photoelectric properties to the whole system, which has become an important idea for the design of new organic photoelectric functional molecules. In this paper, developments on tri-coordinated compounds and tetra-coordinated compounds of boron and performance of their OLED devices are reviewed around the aspects of molecular design, photoelectric properties of compounds, device structure and efficiency. The future development is also discussed.

Fig. 1 Typical structure of triple-layer OLED
Fig. 2 Luminescence Mechanism of various generations of OLEDs
Fig. 3 Principles of designing organic boron-containing photoelectric functional molecules
Table 1 Performance of OLEDs using compounds 1~3
Table 2 Performance of OLEDs using compound 5 ~ 7 as HBL
Table 3 Performance of OLEDs using compounds 11 ~18
Table 4 Performance of OLEDs using compounds 19 ~23
Table 5 Performance of OLEDs using compounds 24 ~ 40 as EML
Table 6 Performance of OLEDs using compounds 41 ~43 as EML
Table 7 Performance of OLEDs using compounds 45 ~ 56
Table 8 Performance of OLEDs using compounds 56 ~ 72
Table 9 Performance of OLEDs using compounds 73 ~ 78
Table 10 Performance of OLEDs using compounds 79 ~ 81
Table 11 Performance of OLEDs using compounds 82 ~ 85
Table 12 Performance of OLEDs using compounds 86 ~ 89
Table 13 Performance of OLEDs using compounds 90 ~ 94
Table 14 Performance of OLEDs using compounds 96 ~ 122
Table 15 Performance of OLEDs using compounds 125 ~ 128
[1]
Im Y, Byun S Y, Kim J H, Lee D R, Oh C S, Yook K S, Lee J Y . Adv. Funct. Mater., 2017,27(13):1606458. https://www.ncbi.nlm.nih.gov/pubmed/29046623

doi: 10.1002/adfm.201605094 pmid: 29046623
[2]
Liu Y C, Li C S, Ren Z J, Yan S K, Bryce M R . Nat. Rev. Mater., 2018,3:18020.
[3]
Cho J, Park J H, Kim J K, Schubert E F . Laser Photonics Rev., 2017,11(2):1600147.
[4]
林丹燕(Lin D Y), 宋森川(Song S C), 陈智勇(Chen Z Y), 郭鹏然(Guo P R), 陈江韩(Chen J H), 史华红(Shi H H), 麦裕良(Mai Y L), 宋化灿(Song H C) . 有机化学 (Chinese Journal of Organic Chemistry), 2018,38(1):103.
[5]
谭继华(Tan J H), 霍延平(Huo Y P), 蔡宁(Cai N), 籍少敏(Ji S M), 李宗植(Li Z Z), 张力(Zhang L) . 有机化学 (Chinese Journal of Organic Chemistry), 2017,37(10):2457.
[6]
蔡勤山(Cai Q S), 王世荣(Wang S R), 肖毅(Xiao Y), 李祥高(Li X G) . 化学进展 (Progress in Chemistry), 2018,30(8):1202.
[7]
Pope M, Kallmann H P, Magnante P . J. Chem. Phys., 1963,30(8):2042.
[8]
Tang C W, VanSlyke S A . Appl. Phys. Lett., 1987,51:913.
[9]
Turro N J, Ramamurthy V, Scaiano J C . Photochem. Photobiol., 2017,11(2):1600147.
[10]
Forrest S R, Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E . Nature, 1998,395:151.
[11]
Kozhevnikov V N, Zheng Y, Clough M, Al-Attar H A, Griffiths G C, Abdullah K, Monkman A P . Chem. Mater., 2013,25(11):2352.
[12]
Chen W C, Lee C S, Tong Q X . J. Mater. Chem. C, 2015,3(42):10957.
[13]
Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C . Adv. Mater., 2009,21:4802. https://www.ncbi.nlm.nih.gov/pubmed/21049498

doi: 10.1002/adma.200900983 pmid: 21049498
[14]
Zhang Q S, Li B, Huang S P, Nomura H, Tanaka H, Adachi C . Nat. Photonics., 2014,8:326.
[15]
Sato K, Shizu K, Yoshimura K, Kawada A, Miyazaki H, Adachi C . Phys. Rev. Lett., 2013,110:247401. https://www.ncbi.nlm.nih.gov/pubmed/25165959

doi: 10.1103/PhysRevLett.110.247401 pmid: 25165959
[16]
Li W J, Pan Y Y, Xiao R, Peng Q M, Zhang S T, Ma D G, Li F, Shen F Z, Wang Y H, Yang B, Ma Y G . Adv. Funct. Mater., 2014,24(11):1609. http://doi.wiley.com/10.1002/adfm.v24.11

doi: 10.1002/adfm.v24.11
[17]
Li W J, Pan Y Y, Yao L, Liu H C, Zhang S T, Wang C, Shen F Z, Lu P, Yang B, Ma, Y . Adv. Opt. Mater., 2014,2(9):892. 16e820db-a08d-4cba-b05c-b394ae101f76http://dx.doi.org/10.1002/adom.201400154

doi: 10.1002/adom.201400154
[18]
Wu T L, Huang M J, Lin C C, Huang P Y, Chou T Y, Chen-Cheng R W, Lin H W, Liu R S, Cheng C H . Nat. Photonics., 2018,12(4):235.
[19]
Nagata R, Nakanotani H, Potscavage W J . Adachi C. Adv. Mater., 2018,30(33):1801484.
[20]
张佐伦(Zhang Z L) . 吉林大学博士论文( Doctoral Dissertation of Jilin University), 2010.
[21]
孙作榜(Sun Z B) . 山东大学硕士论文( Master Dissertation of Shandong University), 2017.
[22]
Ji L, Griesbeck S, Marder T B . Chem. Sci., 2017,8(2):846. https://www.ncbi.nlm.nih.gov/pubmed/28572897

doi: 10.1039/c6sc04245g pmid: 28572897
[23]
Yamaguchi S, Akiyama S, Tamao K . J. Am. Chem. Soc., 2001,123(46):11372. https://www.ncbi.nlm.nih.gov/pubmed/11707112

doi: 10.1021/ja015957w pmid: 11707112
[24]
王保林(Wang B L) . 兰州大学博士论文( Doctoral Dissertation of Jilin University), 2014.
[25]
Noda T, Shirota Y . J. Am. Chem. Soc., 1998,120(37):9714. https://pubs.acs.org/doi/10.1021/ja9817343

doi: 10.1021/ja9817343
[26]
Noda T, Ogawa H, Shirota Y . Adv. Mater., 1999,11(4):283.
[27]
Kinoshita M, Shirota Y . Chem. Lett., 2001,30(7):614.
[28]
Kinoshita M, Kita H, Shirota Y . Adv. Funct. Mater., 2002,12(11/12):780.
[29]
Mazzeo M, Vitale V, Della Sala F, Anni M, Barbarella G, Favaretto L, Sotgiu G, Cingolani R, Gigli G . Adv. Mater., 2005,17(1):34.
[30]
Ma Y G, Zhang H Y, Shen J C, Che C M . J. Am. Chem. Soc., 2001,123(46):11372. https://www.ncbi.nlm.nih.gov/pubmed/11707112

doi: 10.1021/ja015957w pmid: 11707112
[31]
刘磊(Liu L) . 南开大学博士论文( Doctoral Dissertation of Nankai University), 2010.
[32]
唐佳(Liu L) . 吉林大学硕士论文( Master Dissertation of Jilin University), 2015.
[33]
Zhou G J, Ho C L, Wong W Y, Wang Q, Ma D G, Wang L X, Lin Z Y, Marder D B, Beeby A . Adv. Funct. Mater., 2008,18(3):499.
[34]
Hudson Z M, Sun C, Helander M G, Amarne H, Lu Z H, Wang S . Adv. Funct. Mater., 2010,20(20):3426.
[35]
Hudson Z M, Helander M G, Lu Z H, Wang S . Chem. Commun., 2011,47(2):755. https://www.ncbi.nlm.nih.gov/pubmed/21069240

doi: 10.1039/c0cc04014b pmid: 21069240
[36]
Hudson Z M, Wang S . Dalton Trans., 2011,40(31):7805. https://www.ncbi.nlm.nih.gov/pubmed/21603687

doi: 10.1039/c1dt10292c pmid: 21603687
[37]
Wang Z B, Helander M G, Hudson Z M, Qiu J, Wang S N, Lu Z H . Appl. Phys. Lett., 2011,98(21):95.
[38]
Hudson Z M, Sun C, Helander M G, Chang Y L, Lu Z H, Wang S N . J. Am. Chem. Soc., 2012,134(34):13930. https://www.ncbi.nlm.nih.gov/pubmed/22891995

doi: 10.1021/ja3048656 pmid: 22891995
[39]
Yang X L, Guo H R, Liu B A, Zhao J, Zhou G J, Wu Z X, Wong W Y . Adv. Mater., 2018,5(5):1701067.
[40]
Shirota Y, Kinoshita M, Noda T, Okumoto K, Ohara T . J. Am. Chem. Soc., 2000,122(44):11021.
[41]
Doi H, Kinoshita M, Okumoto K, Shirota Y .Chem. Mater., 2003,15(5):1080.
[42]
Suzuki K, Kubo S, Shizu K, Fukushima T, Wakamiya A, Murata Y, Adachi C, Kaji H . Angew. Chem. Int. Ed., 2015,54(50):15231. https://www.ncbi.nlm.nih.gov/pubmed/26563845

doi: 10.1002/anie.201508270 pmid: 26563845
[43]
Numata M, Yasuda T, Adachi C . Chem. Commun., 2015,51(46):9443. https://www.ncbi.nlm.nih.gov/pubmed/25959457

doi: 10.1039/c5cc00307e pmid: 25959457
[44]
Kitamoto Y, Namikawa T, Ikemizu D, Miyata Y, Suzuki T, Kita H, Sato T, Oi S . J. Mater. Chem. C, 2015,3(35):9122.
[45]
Kitamoto Y, Namikawa T, Suzuki T, Miyata Y, Kita H, Sato T, Oi S . Org. Electron., 2016,34:208.
[46]
Kitamoto Y, Namikawa T, Suzuki T, Miyata Y, Kita H, Sato T, Oi S . Tetrahedron Lett., 2016,57(44):4914.
[47]
Chen X L, Jia J H, Yu R, Liao J Z, Yang M X, Lu C Z . Angew. Chem. Int. Ed., 2017,56(47):15006. https://www.ncbi.nlm.nih.gov/pubmed/28990260

doi: 10.1002/anie.201709125 pmid: 28990260
[48]
Hatakeyama T, Shiren K, Nakajima K, Nomura S, Nakatsuka S, Kinoshita K, Ni J P, Ono Y H, Ikuta T . Adv. Mater., 2016,28(14):2777. https://www.ncbi.nlm.nih.gov/pubmed/26865384

doi: 10.1002/adma.201505491 pmid: 26865384
[49]
Liang X, Yan Z P, Han H B, Wu Z G, Zheng Y X, Meng H, Zuo J L, Huang W . Angew. Chem. Int. Ed., 2018,130(35):11486.
[50]
Li D, Zhang H Y, Wang Y . Chem. Soc. Rev., 2013,42(21):8416. https://www.ncbi.nlm.nih.gov/pubmed/23900268

doi: 10.1039/c3cs60170f pmid: 23900268
[51]
张振宇(Zhang Z Y) . 吉林大学博士论文( Doctoral Dissertation of Jilin University), 2016.
[52]
秦研研(Qin Y Y), 许文娟(Xu W J), 胡长永(Hu C Y), 刘淑娟(Liu S J), 赵强(Zhao Q) . 无机化学学报 (Chinese Journal of inorganic Chemistry), 2017,33(10):1705.
[53]
Wu Q, Esteghamatian M, Hu N X, Popovic Z, Enright G, Tao Y, D’Iorio M, Wang S N . Chem. Mater., 2000,12(1):79.
[54]
Anderson S, Weaver M S, Hudson A J . Synth. Met., 2000,111:459.
[55]
Qin Y, Kiburu I, Shah S, Jäkle F . Org. Lett., 2006,8(23):5227. https://www.ncbi.nlm.nih.gov/pubmed/17078684

doi: 10.1021/ol0619664 pmid: 17078684
[56]
Kappaun S, Rentenberger S, Pogantsch A, Zojer E, Mereiter K, Trimmel G, Saf R, Möller K C, Stelzer F, Slugovc C . Chem. Mater., 2006,18(15):3539.
[57]
Li Y Q, Liu Y, Bu W M, Guo J H, Wang Y . Chem. Commun., 2000(16):1551.
[58]
Zhang H Y, Huo C, Ye K Q, Zhang P, Tian W J, Wang Y . Inorg. Chem., 2006,45(7):2788. https://www.ncbi.nlm.nih.gov/pubmed/16562936

doi: 10.1021/ic051881j pmid: 16562936
[59]
Zhang H Y, Huo C, Zhang J Y, Zhang P, Tian W J, Wang Y . Chem. Commun., 2006(3):281.
[60]
Zhang Z L, Yao D D, Zhao S S, Gao H Z, Fan Y, Su Z M, Wang Y . Dalton Trans., 2010,39(21):5123. https://www.ncbi.nlm.nih.gov/pubmed/20407672

doi: 10.1039/b925608c pmid: 20407672
[61]
Li D, Zhang H Y, Wang C G, Huang S, Guo J H, Wang Y . J. Mater. Chem., 2012,22(10):4319.
[62]
Zhang Z Y, Zhang Z L, Ye K Q, Zhang J Y, Zhang H Y, Wang Y . Dalton Trans., 2015,44(32):14436. https://www.ncbi.nlm.nih.gov/pubmed/26202879

doi: 10.1039/c5dt02093j pmid: 26202879
[63]
张振宇(Zhang Z Y), 李婉君(Li W J), 叶开其(Ye K Q), 张红雨(Zhang H Y) . 化学学报 (Acta Chimica Sinica), 2016,74:179.
[64]
Zhang Z L, Bi H, Zhang Y, Yao D D, Gao H Z, Fan Y, Zhang H Y, Wang Y, Wang Y P, Chen Z Y, Ma D . Inorg. Chem., 2009,48(15):7230. https://www.ncbi.nlm.nih.gov/pubmed/19555088

doi: 10.1021/ic900673s pmid: 19555088
[65]
Hassan A, Wang S N, Chem. Commun ., 1998(2):211.
[66]
Wu Q G, Esteghamatian M, Hu N X, Popovic Z, Enright G, Breeze S R, Wang S N . Angew. Chem. Int. Ed., 1999,38(7):985. https://www.ncbi.nlm.nih.gov/pubmed/29711864

doi: 10.1002/(SICI)1521-3773(19990401)38:7【-逻*辑*与-】lt;985::AID-ANIE985【-逻*辑*与-】gt;3.0.CO;2-C pmid: 29711864
[67]
Liu S F, Wu Q G, Schmider H L, Aziz H, Hu N X, Popović Z, Wang S N . J. Am. Chem. Soc., 2000,122(15):3671.
[68]
Liu Q D, Mudadu M S, Schmider H, Thummel R, Tao Y, Wang S N . Organometallics., 2002,21(22):4743.
[69]
Liu Q D, Mudadu M S, Thummel R, Tao Y, Wang S N . Adv. Funct. Mater., 2005,15(1):143. http://doi.wiley.com/10.1002/%28ISSN%291616-3028

doi: 10.1002/(ISSN)1616-3028
[70]
Chen H Y., Chi Y, Liu C S, Yu J K, Cheng Y M, Chen K S, Chou P T, Peng S M, Lee G H, Carty A J, Yeh S J, Chen C T . Adv. Funct. Mater., 2005,15(4):567.
[71]
Chen T R, Chien R H, Yeh A, Chen J D . J. Organomet. Chem., 2006,691(9):1998.
[72]
Suresh D, Gomes C S, Gomes P T, Di Paolo R E, Maçanita A L, Calhorda M J, Duarte M T . Dalton Trans., 2012,41(28):8502. https://www.ncbi.nlm.nih.gov/pubmed/22552694

doi: 10.1039/c2dt30487b pmid: 22552694
[73]
Suresh D, Gomes C S, Lopes P S, Figueira C A, Ferreira B, Gomes P T, Di Paolo R E, Maçanita A L, Duarte M T, Charas A, Morgado J, Vila-Viçosa D, Calhorda M J . Chem. -Eur. J., 2015,21(25):9133. https://www.ncbi.nlm.nih.gov/pubmed/25965317

doi: 10.1002/chem.201500109 pmid: 25965317
[74]
Loudet A, Burgess K . Handbook of Porphyrin Science(Volume 8). 2010. 1.
[75]
Boens N, Leen V, Dehaen W . Chem. Soc. Rev., 2012,41(3):1130. https://www.ncbi.nlm.nih.gov/pubmed/21796324

doi: 10.1039/c1cs15132k pmid: 21796324
[76]
Guo Z, Park S, Yoon J, Shin I . Chem. Soc. Rev., 2014,43(1):16. https://www.ncbi.nlm.nih.gov/pubmed/24052190

doi: 10.1039/c3cs60271k pmid: 24052190
[77]
池雨(Chi Y), 高云玲(Gao Y L), 潘勇(Pan Y), 刘孟(Liu M),赵辉(Zhao H) . 化工进展 (Chemical Industrial and Engineering Progress), 2018,37(3):1137.
[78]
Chapran M, Angioni E, Findlay N J, Breig B, Cherpak V, Stakhira P, Tuttle T, Volyniuk D, Grazulevicius J V, Nastishin Y A, Lavrentovich O D, Skabara P J . ACS Appl. Mater. Inter., 2017,9(5):4750. https://www.ncbi.nlm.nih.gov/pubmed/28078885

doi: 10.1021/acsami.6b13689 pmid: 28078885
[79]
Zampetti A, Minotto A, Squeo B M, Gregoriou V G, Allard S, Scherf U, Chochos C L, Cacialli F . Sci. Rep., 2017,7(1):1611. https://www.ncbi.nlm.nih.gov/pubmed/28487525

doi: 10.1038/s41598-017-01785-2 pmid: 28487525
[80]
D’Aléo A, Sazzad M H, Kim D H, Choi E Y, Wu J W, Canard G, Fages F, Ribierre J C, Adachi C . Chem Commun., 2017,53(52):7003. https://www.ncbi.nlm.nih.gov/pubmed/28513655

doi: 10.1039/c7cc01786c pmid: 28513655
[81]
Kim D H, D’Aléo A, Chen X K, Sandanayaka A D S, Yao D D, Zhao L, Komino T, Zaborova E, Canard G, Tsuchiya Y, Choi E, Wu J W, Fages F, Brédas J L, Ribierre J C, Adachi C . Nat. Photonics., 2018,12(2):98.
[1] Jianfeng Yan, Jindong Xu, Ruiying Zhang, Pin Zhou, Yaofeng Yuan, Yuanming Li. Nanocarbon Molecules — the Fascination of Synthetic Chemistry [J]. Progress in Chemistry, 2023, 35(5): 699-708.
[2] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[3] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[4] Jiang Haoyang, Xiong Feng, Qin Mulin, Gao Song, He Liuruyi, Zou Ruqiang. Conductive Phase Change Materials (PCMs) for Electro-to-Thermal Energy Conversion, Storage and Utilization [J]. Progress in Chemistry, 2023, 35(3): 360-374.
[5] Feng Li, Qingyun He, Fang Li, Xiaolong Tang, Changlin Yu. Materials for Hydrogen Peroxide Production via Photocatalysis [J]. Progress in Chemistry, 2023, 35(2): 330-349.
[6] Juan Ye, Ziqian Lin, Weijian Li, Hongping Xiang, Minzhi Rong, Mingqiu Zhang. Fabrication Strategies to Self-Healing Silicone Materials [J]. Progress in Chemistry, 2023, 35(1): 135-156.
[7] Jing Li, Weigang Zhu, Wenping Hu. Organic Complex Materials and Devices for Near and Shortwave Infrared Photodetection [J]. Progress in Chemistry, 2023, 35(1): 119-134.
[8] Xuan Li, Jiongpeng Huang, Yifan Zhang, Lei Shi. 1D Nanoribbons of 2D Materials [J]. Progress in Chemistry, 2023, 35(1): 88-104.
[9] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[10] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[11] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[12] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[13] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[14] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[15] Shunxin Gu, Qin Jiang, Pengfei Shi. Antitumor Activity and Application of Luminescent Iridium(Ⅲ) Complexes [J]. Progress in Chemistry, 2022, 34(9): 1957-1971.