中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (5): 654-666 DOI: 10.7536/PC181032 Previous Articles   Next Articles

Methods for Studying the Age Determination of Fingermarks

Hongjuan Wang, Mi Shi, Lu Tian, Liang Zhao**(), Meiqin Zhang**()   

  1. Research Center for Bioengineering & Sensing Technology, Beijing Key Laborotary of Bioengineering & Sensing Technology, University of Science & Technology Beijing, Beijing 100083, China
  • Received: Online: Published:
  • Contact: Liang Zhao, Meiqin Zhang
  • About author:
    ** E-mail: (Meiqin Zhang);
  • Supported by:
    work was suported by the National Natural Science Foundation of China(21775011); work was suported by the National Natural Science Foundation of China(21727815); work was suported by the National Natural Science Foundation of China(21675011)
Richhtml ( 17 ) PDF ( 523 ) Cited
Export

EndNote

Ris

BibTeX

Since the end of the 19th century, fingermark identification has always been one of the most useful evidences of individual identification for criminal investigation worldwide. However, up to now the age determination of a fingermark remains a relatively unexplored area. The physical features of the fingermark ridges and chemical compositions of the fingermark residues vary remarkably with different donor characteristics, substrate properties and environmental variables. Moreover, the physical ridge features, molecular species and content of the chemical components in fingermark change dramatically with different storage factors and aging kinetics. Studying the ridge physical features, the initial chemical compositions of fingermark residues and their relationship with the fingermark age is a crucial topic in the forensic science field, because it contributes not only to the development of new fingermark detection approaches and techniques, but also to the correlating identification of fingermarks found at crime scenes. This review discusses the previous achievements of fingermark dating methods and techniques such as liquid chromatography, fluorescence spectroscopy, infrared spectroscopy, ultraviolet-visible spectroscopy, Raman spectroscopy, mass spectrometry and high-resolution imaging, and the limits for the application of such approaches in practice. Besides, the challenges and perspectives of developing a potentially more reliable methodology for fingermark age determination are described.

Table 1 Target compounds from sebaceous identified in fingermark residue and aging kinetics[15,16]
Fig. 1 Fingermark age-estimation procedure . A) Autofluorescence image of a fingermark illuminated with 365 nm light. B) Tryp and FOX fluorescence emission spectra. Blue line: excitation at 283 nm, red line: excitation at 365 nm. Shaded area: integrated area for FOXfl determination. C) Fit of reference fluorescence emission spectrum (lavender line) to the measured Tryp fluorescence emission spectrum (blue line) as shown in (B). D)?: Trypfl/FOXfl ratio of an aging fingermark, black line: fitted aging curve. Reprinted with permission from ref 49. Copyright 2014 Wiley.
Fig. 2 FTIRM spectra of skin, sebum, and sweat with their corresponding light micrographs. Scale bar: 20 μm. Reprinted with permission from ref 18. Copyright 2010 Wiley.
Fig. 3 Raman spectra from a freshly deposited fingermark(red) and after one month of aging(blue). Reprinted with permission from ref 53. Copyright 2017 Wiley.
Fig. 4 MALDI-MS analysis of standard oleic acid(OA). Reprinted with permission from ref 58. Copyright 2009 Wiley.
Fig. 5 (a) GC-MS/MS chromatograms of a 9-day-old transesterified fingermark extract;(b) The SQ/C15:0 ratio change dependence on time and light exposure in fingerprint samples of four different donors A, B, C, D(minor axis: 0-fresh fingerprint without exposure to light). Reprinted with permission from ref 59. Copyright 2017 Springer.
Fig. 6 (a) TOF-SIMS ion images of the fingerprint, showing the distribution of the C16H31O2- ion(palmitic acid) on top of a bare silicon wafer, the red rectangle shows the region of interest(150 pixels wide) that was used to obtain a portion of the linescans shown in part b;(b) the intensity of palmitic acid from the edge of the fingermark as a function of time. Reprinted with permission from ref 21. Copyright 2015 ACS.
Fig. 7 Different degradation outcomes of powder-developed fingermarks on different surfaces, light exposure, and secretion types over time. Reprinted with permission from ref 60. Copyright 2016 Wiley.
Table 2 Summary of age determination methods together with their advantages and disadvantages
Method Target Age
estimation
Advantage Disadvantage ref
Fluorescence Tryp / FOX Three weeks Non-contact; partially solving variations in
composition between donors
The oxidation process is very sensitive to
environmental factors such as temperature and light
49
FTIR Aliphatic CH3,
aliphatic CH2, and
carbonyl ester
Four weeks High spatial resolution; quantitative and
non-invasive; examining individual
fingerprint components separately
No account for variations between genders 18
UV-Vis Eccrine, sebaceous Three days Reproducible; providing opportunity to
address the strong influence of different
sweat compositions on the aging behavior
Fresh prints with a low aging speed as well as aged
prints are hard to distinguish
52
RS Carotenoids, squalene,
unsaturated fatty
acids, proteins
One month Non-destructive; providinglarger data sets
for future statistical analysis
More data will be needed
to gain further insight into the different
decay mechanisms
53
GC
/MS
Relative peak areas of
squalene to cholesterol;PA(Wax esters) / [PA(cholesterol) +PA
(squalene)]
One month Reproducible; reducing partly intra- and
inter-variability of fingermark composition
The technique is destructive for the fingermarks 53
MALDI-MS Oleic acid(OA) Seven days Non-destructive; high resolution imaging No account for variations in more
environmental factors
58
GC-MS/MS SQ/C15:0 Nine days Detecting two age different samples on
a glass surface from the same donor
Initial component cannot be determined 59
TOF
-SIMS
Palmitic acid Four days Detecting and identifing multiple
chemical species simultaneously; High
resolution and sensitivity
Molecules can degrade or become oxidized upon
exposuring to various environmental factors
21
High-
resolution imaging
Minutiae count;
color contrast
between ridges and
furrows;discontinuity index;ridge width
Six months Non-destructive; quantitative,
high resolution and sensitivity
It is not suitable for multiple individuals to study simultaneously 60~63
Ridge height One year Non-destructive, contactless, reobservation, inexpensive cost, without pretreatment, lower error, large area of analysis Detection limit(insensitive to very thin layers); slow data acquisition times at very high resolutions 66
[1]
Gardner T J, Anderson T M . Nelson Education, 2015.
[2]
Adebsi S . The Internet Journal of Biological Anthropology, 2009,2:1.
[3]
张美芹(Zhang M Q), 张亭(Zhang T), 秦刚(Qin G), 张扬(Zhang Y), 张学记(Zhang X J) . 应用化学 (Chinese Journal of Applied Chemistry), 2011,29(1):1.
[4]
a) van Asten A C . Science & Justice, 2014,54(2):170 https://www.ncbi.nlm.nih.gov/pubmed/24630329

doi: 10.1016/j.scijus.2013.09.003 pmid: 24630329
b) Weyermann C, Ribaux O . Science & Justice, 2012,52(2):68.

pmid: 24630329
[5]
Weyermann C, Roux C, Champod C . Journal of Forensic Sciences, 2011,56(1):102. https://www.ncbi.nlm.nih.gov/pubmed/20707835

doi: 10.1111/j.1556-4029.2010.01523.x pmid: 20707835
[6]
du Preez C, Xiao L, Spindler X, Maynard P, Weyermann C, Lennard C, Roux C . 20th Internationa Symposium on the Forensic Sciences, 2010.
[7]
Wertheim K . Journal of Forensic Identification, 2003,53(1):42.
[8]
Koenig A, Girod A, Weyermann C . Journal of Forensic Identification, 2011,61(6):652.
[9]
Emerson B, Gidden J, Lay J O, Durham B . Journal of Forensic Sciences, 2011,56(2):381. https://www.ncbi.nlm.nih.gov/pubmed/21265833

doi: 10.1111/j.1556-4029.2010.01655.x pmid: 21265833
[10]
De Alcaraz-Fossoul J, Patris C M, Muntaner A B, Feixat C B, Badia M G . International Journal of Legal Medicine, 2013,127(4):857. https://www.ncbi.nlm.nih.gov/pubmed/23232540

doi: 10.1007/s00414-012-0797-0 pmid: 23232540
[11]
Merkel R, Gruhn S, Dittmann J, Vielhauer C, Bräutigam A . Three-Dimensional Image Processing(3DIP) and Applications II. International Society for Optics and Photonics, 2012,8290:82900Y.
[12]
Merkel R, Dittmann J . Image and Signal Processing and Analysis(ISPA), 2011 7th International Symposium on. IEEE, 2011: 644.
[13]
Merkel R, Dittmann J, Vielhauer C . Information Forensics and Security(WIFS), 2011 IEEE International Workshop on. IEEE, 2011: 1.
[14]
Merkel R, Dittmann J, Vielhauer C . IFIP International Conference on Communications and Multimedia Security. Berlin: Springer, 2011. 59.
[15]
Girod A, Ramotowski R, Weyermann C . Forensic Science International, 2012,223(1/3):10. https://www.ncbi.nlm.nih.gov/pubmed/22727572

doi: 10.1016/j.forsciint.2012.05.018 pmid: 22727572
[16]
Cadd S, Islam M, Manson P, Bleay S . Science & Justice, 2015,55(4):219. https://www.ncbi.nlm.nih.gov/pubmed/26087870

doi: 10.1016/j.scijus.2015.02.004 pmid: 26087870
[17]
孙婧(Sun J), 樊丽(Fan L) . 刑事技术 (Forensic Science and Technology), 2016,41(3):225.
[18]
Antoine K M, Mortazavi S, Miller A D, Miller L M . Journal of Forensic Sciences, 2010,55(2):513. https://www.ncbi.nlm.nih.gov/pubmed/20070471

doi: 10.1111/j.1556-4029.2009.01262.x pmid: 20070471
[19]
Victoria Police , Victoria Forensic Science Centre. 2002.
[20]
Mong G M, Petersen C E, Clauss T R W . Pacific Northwest National Lab, Richland, WA(US), 1999.
[21]
Muramoto S, Sisco E . Analytical Chemistry, 2015,87(16):8035. https://www.ncbi.nlm.nih.gov/pubmed/26185934

doi: 10.1021/acs.analchem.5b02018 pmid: 26185934
[22]
Srivastava A, Prasad R . Renewable and Sustainable Energy Reviews, 2000,4(2):111.
[23]
Pleik S, Spengler B, Bhandari D R, Luhn S, Schäfer T, Urbach D, Kirsch D . Analyst, 2018,143(5):1197. https://www.ncbi.nlm.nih.gov/pubmed/29431747

doi: 10.1039/c7an01506b pmid: 29431747
[24]
Mountfort K A, Bronstein H, Archer N, Jickells S M . Analytical Chemistry, 2007,79(7):2650. https://www.ncbi.nlm.nih.gov/pubmed/17343365

doi: 10.1021/ac0623944 pmid: 17343365
[25]
Johnston A, Rogers K . Science & Justice, 2018,58(2):121. https://www.ncbi.nlm.nih.gov/pubmed/29526263

doi: 10.1016/j.scijus.2017.11.004 pmid: 29526263
[26]
Chadwick S, Moret S, Jayashanka N, Lennard C, Spindler X, Roux C . Forensic Science International, 2018,289:381. https://www.ncbi.nlm.nih.gov/pubmed/29960948

doi: 10.1016/j.forsciint.2018.06.014 pmid: 29960948
[27]
Croxton R S, Baron M G, Butler D, Kent T, Sears V G . Forensic Science International, 2010,199(1/3):93. https://www.ncbi.nlm.nih.gov/pubmed/20413233

doi: 10.1016/j.forsciint.2010.03.019 pmid: 20413233
[28]
Asano K G, Bayne C K, Horsman K M, Buchanan M V . Journal of Forensic Science, 2002,47(4):1.
[29]
Penn D J, Oberzaucher E, Grammer K, Fischer G, Soini H A, Wiesler D, Novotny M V, Dixon S J, Xu Y, Brereton R G . Journal of the Royal Society Interface, 2007,4(13):331. https://www.ncbi.nlm.nih.gov/pubmed/17251141

doi: 10.1098/rsif.2006.0182 pmid: 17251141
[30]
Jacobsen E, Billings J K, Frantz R A, Kinney C K, Stewart M E, Downing D T . Journal of Investigative Dermatology, 1985,85(5):483. https://www.ncbi.nlm.nih.gov/pubmed/4056460

doi: 10.1111/1523-1747.ep12277224 pmid: 4056460
[31]
Williams D K, Brown C J, Bruker J . Forensic Science International, 2011,206(1/3):161. https://www.ncbi.nlm.nih.gov/pubmed/21295928

doi: 10.1016/j.forsciint.2010.07.033 pmid: 21295928
[32]
Cuthbertson F . HM Stationery Office, 1969.
[33]
Ramotowski R S . Advances in Fingerprint Technology, 2001,2:63.
[34]
Jasuja O P, Toofany M A, Singh G, Sodhi G S . Science and Justice, 2009,49(1):8. https://www.ncbi.nlm.nih.gov/pubmed/19418922

doi: 10.1016/j.scijus.2008.08.001 pmid: 19418922
[35]
Jones N E, Davies L M, Russell C A L, Brennan J S, Bramble S K . Journal of Forensic Identification, 2001,51(5):504.
[36]
Bobev K . Journal of Forensic Identification, 1995,45(2):176.
[37]
Almog J, Azoury M, Elmaliah Y, Berenstein L, Zaban A . Journal of Forensic Science, 2004, 49(5): JFS2004009-5.
[38]
Johnston A, Rogers K . Applied Spectroscopy, 2017,71(9):2102. https://www.ncbi.nlm.nih.gov/pubmed/28862035

doi: 10.1177/0003702817694902 pmid: 28862035
[39]
Ricci C, Phiriyavityopas P, Curum N, Chan K A, Jickells S, Kazarian S G . Applied Spectroscopy, 2007,61(5):514. https://www.ncbi.nlm.nih.gov/pubmed/17555621

doi: 10.1366/000370207780807849 pmid: 17555621
[40]
De Paoli G, Lewis Sr S A, Schuette E L, Lewis L A, Connatser R M, Farkas T . Journal of Forensic Sciences, 2010,55(4):962. https://www.ncbi.nlm.nih.gov/pubmed/20487155

doi: 10.1111/j.1556-4029.2010.01420.x pmid: 20487155
[41]
Archer N E, Charles Y, Elliott J A, Jickells S . Forensic Science International, 2005,154(2/3):224. https://www.ncbi.nlm.nih.gov/pubmed/16182971

doi: 10.1016/j.forsciint.2004.09.120 pmid: 16182971
[42]
Dikshitulu Y S, Prasad L, Pal J N, Rao C V N . Forensic Science International, 1986,31(4):261. https://www.ncbi.nlm.nih.gov/pubmed/3744217

doi: 10.1016/0379-0738(86)90165-9 pmid: 3744217
[43]
Olsen R D . The Identification News. 1987,10.
[44]
Dalrymple B E, Duff J M, Menzel E R . Journal of Forensic Science, 1977,22(1):106.
[45]
Duff J M, Menzel E R . Journal of Forensic Science, 1978,23(1):129.
[46]
Menzel E R . Journal of Forensic Sciences, 1992,37(5):1212.
[47]
Lambrechts S A G, van Dam A, de Vos J, van Weert A, Sijen T, Aalders, M C G . Forensic Science International, 2012,222(1/3):89. https://www.ncbi.nlm.nih.gov/pubmed/22658744

doi: 10.1016/j.forsciint.2012.05.004 pmid: 22658744
[48]
van Dam A, Aalders M C G, Todorovski T, van Leeuwen T G, Lambrecht S A . Forensic Science International, 2016,258:19. https://www.ncbi.nlm.nih.gov/pubmed/26638122

doi: 10.1016/j.forsciint.2015.11.002 pmid: 26638122
[49]
van Dam A, Schwarz J C V, de Vos J, Siebes M, Sijen T, van Leeuwen T G, Aalders M C, Lambrechts S A . Angewandte Chemie International Edition, 2014,53(24):6272. https://www.ncbi.nlm.nih.gov/pubmed/24847728

doi: 10.1002/anie.201402740 pmid: 24847728
[50]
Humecki H . Proceedings of the International Symposium on Questioned Documents. 1985: 131.
[51]
Edelman G J, Gaston E, Van Leeuwen T G, Cullen P J, Aalder M C G . Forensic Science International, 2012,223(1/3):28. https://www.ncbi.nlm.nih.gov/pubmed/23088824

doi: 10.1016/j.forsciint.2012.09.012 pmid: 23088824
[52]
Merkel R . IT Security Incident Management & IT Forensics(IMF), 2015 Ninth International Conference on. IEEE, 2015. 121.
[53]
Andersson P O, Lejon C, Mikaelsson T, Landström, L . Chemistry Open, 2017,6(6):706. https://www.ncbi.nlm.nih.gov/pubmed/29226058

doi: 10.1002/open.201700129 pmid: 29226058
[54]
McRoberts A L, Kuhn K E . Journal of Forensic Identification, 1992,42(3):213.
[55]
Girod A, Spyratou A, Holmes D, Weyermann C . Science & Justice, 2016,56(3):165. https://www.ncbi.nlm.nih.gov/pubmed/27162015

doi: 10.1016/j.scijus.2015.12.004 pmid: 27162015
[56]
Pirman D A, Reich R F, Kiss A, Heeren R M, Yost R A . Analytical Chemistry, 2012,85(2):1081. https://www.ncbi.nlm.nih.gov/pubmed/23214490

doi: 10.1021/ac302960j pmid: 23214490
[57]
Huang L, Xiao X, Xie Y, Kageruka H, Zhou Y, Deng F, Zhong H . Analytica Chimica Acta, 2013,786:85. https://www.ncbi.nlm.nih.gov/pubmed/23790296

doi: 10.1016/j.aca.2013.05.018 pmid: 23790296
[58]
Wolstenholme R, Bradshaw R, Clench M R, Francese S . Rapid Communications in Mass Spectrometry, 2009,23(19):3031. https://www.ncbi.nlm.nih.gov/pubmed/19711300

doi: 10.1002/rcm.4218 pmid: 19711300
[59]
Szabóová Ž, Galbavá P, Szabó A H, Cigáň M, Nižnanský L’, Kubinec R, Blaško J . Monatshefte für Chemie-Chemical Monthly, 2017,148(9):1673.
[60]
De Alcaraz-Fossoul J, Mestres Patris C, Barrot Feixat C, McGarr L, Brandelli D, Stow K, Gené Badia M . Journal of Forensic Sciences, 2016,61(2):322. https://www.ncbi.nlm.nih.gov/pubmed/27404605

doi: 10.1111/1556-4029.13007 pmid: 27404605
[61]
De Alcaraz-Fossoul J, Barrot Feixat C, Tasker J, McGarr L, Stow K, Carreras-Marin C, Turbany Oset J, Gené Badia M . Journal of Forensic Sciences, 2016,61(4):947. https://www.ncbi.nlm.nih.gov/pubmed/27364272

doi: 10.1111/1556-4029.13099 pmid: 27364272
[62]
De Alcaraz-Fossoul J, Barrot Feixat C, Carreras-Marin C, Tasker J, Zapico S C, Gené Badia M . Journal of Forensic Sciences, 2017,62(5):1180. https://www.ncbi.nlm.nih.gov/pubmed/28144945

doi: 10.1111/1556-4029.13438 pmid: 28144945
[63]
De Alcaraz-Fossoul J, Barrot Feixat C, Zapico S C, Mancenido M, Broatch J, Roberts K A, Carreras-Marin C, Tasker J . Journal of Forensic Sciences, 2018,63(4):1085 https://www.ncbi.nlm.nih.gov/pubmed/28973828

doi: 10.1111/1556-4029.13656 pmid: 28973828
[64]
Wallis J, Goulet J . Journal of Forensic Identification, 2017,67(2):259.
[65]
Deininger L, Francese S, Clench M R, Langenburg G, Sears V, Sammon C . Science & Justice, 2018,58(6):397. https://www.ncbi.nlm.nih.gov/pubmed/30446068

doi: 10.1016/j.scijus.2018.07.001 pmid: 30446068
[66]
De Alcaraz-Fossoul J, Mancenido M, Soignard E, Silverman N . Journal of Forensic Sciences, 2019,64(2):570. https://www.ncbi.nlm.nih.gov/pubmed/30132889

doi: 10.1111/1556-4029.13891 pmid: 30132889
[67]
Angst E . The International Criminal Police Review, 1962,16:134.
[68]
Girod A, Xiao L, Reedy B, Roux C, Weyermann C . Forensic Science International, 2015,254:185. https://www.ncbi.nlm.nih.gov/pubmed/26254626

doi: 10.1016/j.forsciint.2015.07.022 pmid: 26254626
[69]
Merkel R, Gruhn S, Dittmann J, Vielhauer C, Bräutigam A . Forensic Science International, 2012,222(1/3):52. https://www.ncbi.nlm.nih.gov/pubmed/22658793

doi: 10.1016/j.forsciint.2012.05.001 pmid: 22658793
[70]
Merkel R, Otte K, Clausing R, Dittmann J, Vielhauer C, Bräutigam A . Proceedings of the First ACM Workshop on Information Hiding and Multimedia Security. ACM, 2013: 95.
[71]
Rosa R, Giovanardi R, Bozza A, Veronesi P, Leonelli C . Forensic Science International, 2017,273:144. https://www.ncbi.nlm.nih.gov/pubmed/28273546

doi: 10.1016/j.forsciint.2017.02.016 pmid: 28273546
[72]
Girod A, Ramotowski R, Lambrechts S, Misrielal P, Aalders M, Weyermann C . Forensic Science International, 2016,262:212. https://www.ncbi.nlm.nih.gov/pubmed/27044033

doi: 10.1016/j.forsciint.2016.03.021 pmid: 27044033
[1] Jing He, Jia Chen, Hongdeng Qiu. Synthesis of Traditional Chinese Medicines-Derived Carbon Dots for Bioimaging and Therapeutics [J]. Progress in Chemistry, 2023, 35(5): 655-682.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[4] Jiliang Guo, Jianfei Peng, Ainan Song, Jinsheng Zhang, Zhuofei Du, Hongjun Mao. Studies on the Formation of Secondary Organic Aerosol from Vehicle Exhaust [J]. Progress in Chemistry, 2023, 35(1): 177-188.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[7] Zhen Wang, Xi Li, Yuanyuan Li, Qi Wang, Xiaomei Lu, Quli Fan. Activatable NIR-Ⅱ Probe for Tumor Imaging [J]. Progress in Chemistry, 2022, 34(1): 198-206.
[8] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[9] Huifeng Xu, Yongqiang Dong, Xi Zhu, Lishuang Yu. Novel Two-Dimensional MXene for Biomedical Applications [J]. Progress in Chemistry, 2021, 33(5): 752-766.
[10] Yecheng Dang, Yangzhen Feng, Dugang Chen. Red/Near-Infrared Biothiol Fluorescent Probes [J]. Progress in Chemistry, 2021, 33(5): 868-882.
[11] Chao Zhao, Zongwei Cai. Mass Spectrometry Imaging and Omics for Environmental Toxicology Research [J]. Progress in Chemistry, 2021, 33(4): 503-511.
[12] Fei Ren, Jianbing Shi, Bin Tong, Zhengxu Cai, Yuping Dong. Near Infrared Fluorescent Dyes with Aggregation-Induced Emission [J]. Progress in Chemistry, 2021, 33(3): 341-354.
[13] Yunxue Wu, Hengyi Zhang, Yu Liu. Application of Azobenzene Derivative Probes in Hypoxia Cell Imaging [J]. Progress in Chemistry, 2021, 33(3): 331-340.
[14] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[15] Jiawei Liu, Jing Wang, Qi Wang, Quli Fan, Wei Huang. Applications of Activatable Organic Photoacoustic Contrast Agents [J]. Progress in Chemistry, 2021, 33(2): 216-231.