中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (4): 561-570 DOI: 10.7536/PC180919 Previous Articles   Next Articles

Diatomite-Based Material as an Adsorbent or Photocatalyst for Water Treatment

Hongbo He1,2, Yimin Luo2, Zhuangzhu Luo2,**(), Changlin Yu3,4,**()   

  1. 1. School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510000, China
    2. School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519000, China
    3. Faculty of Environmental Science and Engineering, Key Laboratory of Petrochemical Pollution Process and Control, Guangdong Province, Guangdong University of Petrochemical Technology, Maoming 525000, China
    4. School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received: Online: Published:
  • Contact: Zhuangzhu Luo, Changlin Yu
  • About author:
    ** E-mail: (Zhuangzhu Luo)
    ** E-mail: (Changlin Yu)
  • Supported by:
    Fund:The work was supported by the National Natural Science Foundation of China(51575504); Fund:The work was supported by the National Natural Science Foundation of China(21567008); 5511 Talents in Scientific and Technological Innovation of Jiangxi Province(20165BCB18014); Academic and Technical Leaders of the Main Disciplines in Jiangxi Province(20172BCB22018); Guangdong Province of Yangfan Project.
Richhtml ( 43 ) PDF ( 1170 ) Cited
Export

EndNote

Ris

BibTeX

Diatomite is a porous material formed by the remains of diatom, which has the advantages of large specific surface area, good corrosion resistance, green and innocuity. Diatomite-based materials as adsorbent or photocatalyst show wide application prospects in sewage treatment because of easily available raw material and low in price. However, most of the natural diatomite contains some metal oxide impurities, which may reduce the porosity and affect the adsorption and photocatalysis performance of diatomite. Therefore, the majority of research of diatomite materials for water treatment have been focused on surface decoration and composite modification to strengthen the adsorption and photocatalytic performance. In this review, the recent research progress of diatomite-based materials in treatment of wastewater(such as organic wastewater, eutrophic wastewater, heavy metal ion wastewater, etc.) are summarized and commented based on the principle of adsorption and photocatalysis, and the relationships between structure and performance of diatomite are analyzed from different modification methods. Finally, suggestions and outlooks on the future research directions in diatomite-based materials as adsorbent or photocatalyst are given.

Fig. 1 The diagrams of water purification process by(a) adsorption and (b) photocatalysis
Table 1 Application of diatomite-based adsorbent materials in water treatment
Fig. 2 Preparation process of diatomite microsphere(a); SEM image(b); adsorption of MB(c); adsorption mechanism(d)[33]. Copyright 2018, Elsevier.
Fig. 3 Recovery mechanism of phosphate from eutrophic wastewater by MgO-D[47]. Copyright 2017, ACS Publications.
Fig. 4 HRTEM images and corresponding EDS maps for Si, O and Fe for the NZVI-DE(a); Selectively adsorption of Cu2+ by NZVI-DE(b)[68]. Copyright 2018, Elsevier.
Table 2 Application of diatomite-based photocatalyst materials in water treatment
Fig. 5 SEM images of raw diatomite sample(a), and Nb2O5/diatomite samples having been hydrothermally treated at 160 ℃ successively for(b) 6 h,(c) and(d) 9 h,(e) and(f) 12 h, and(g) and(h) 14 h[92]. Copyright 2018, Elsevier.
[1]
Parmar T K, Rawtani D ,Agrawal Y K. Front. Life Sci, 2016,9(2):110.
[2]
Chen H Y, Hao Y, Li J W, Song X J . Cleaner Prod., 2018,195:200.
[3]
Dalgard O S, Tambs K. Br. J . Psychiatry, 2018,171(6):530.
[4]
Zhu W K, Li Y, Dai L H, Li J W, Li X Y, Li W, Duan T, Lei J ,Chen T. Chem. Eng. J, 2018,339:214.
[5]
Chen Z, Kahn M E, Liu Y, Wang Z . Environ. Econ. Manag., 2018,88:468.
[6]
杨世迎(Yang S Y), 郑迪(Zheng D), 常书雅(Chang S Y), 石超(Shi C) . 学进展(Progress in Chemistry), 2016,28(5):754.
[7]
Zeng D B, Yang K, Yu C L, Chen F Y, Li X X, Wu Z, Liu Hl . Appl.Cata., 2018,237(5):449.
[8]
Yu C L, Zhou W Q, Zhu L H, Li G, Yang K ,Jin R C. Appl. Catal. B, 2016,184:1.
[9]
Tian J, Liu R Y, Liu Z, Yu C L ,Liu M C. Chin. J. Catal, 2017,38(12):1999.
[10]
洪波(He H B), 薛霜霜(Xue S S), 余长林(Yu C L), 樊启哲(Fan Q Z) . 无机化学学报(Chinese Journal of Inorganic Chemistry), 2016,32(4):625.
[11]
Xue S S, He H B, Wu Z, Yu C L, Fan Q Z, Peng G M, Yang K . Alloys Compd., 2017,694:989.
[12]
陆蒙超(Lu M C) 苏州大学硕士论文( Master Dissertation of Soochow University), 2016.
[13]
Guo L C, Li J J, Cao T T, Wang H Y, Zhao N Q, He F, Shi C S, He C N ,Liu E Z. ACS Appl. Mater. Interfaces, 2016,8(37):24594.
[14]
Mirzaei M, Mokhtarani B, Badiei A ,Sharifi A. Chem. Eng. Technol, 2018,41(5):1272.
[15]
Zhu R L, Chen Q Z, Zhou Q, Xi Y F, Zhu J X ,He H P. Appl. Clay Sci, 2016,123:239.
[16]
Gupta V K, Suhas. J. Environ . Manage., 2009,90(8):2313.
[17]
Rezaei F ,Grahn M. Ind. Eng. Chem. Res., 2016,51(10):4025.
[18]
Reddy D H K, Yun Y S . Coord. Chem. Rev., 2016,315:90.
[19]
Yu C L, Yu J C, He H B ,Zhou W Q. Rare Met, 2016,35(3):211.
[20]
何洪波(He H B), 薛霜霜(Xue S S), 余长林(Yu C L) . 有色金属科学与工程(Nonferrous Metals Science and Engineering), 2015,6(5):32.
[21]
Inchaurrondo N, Font J, Ramos C P, Haure P. Appl.Catal.B, 2016,181:481.
[22]
张钊陶(Zhang Z T) . 长春大学硕士论文(Master Dissertation of Changcun University), 2017.
[23]
Li J, Guan P, Zhang Y, Xiang B, Tang X H ,She H D. Sep. Purif. Technol, 2017,174:275.
[24]
Deng Y, Li J H, Qian T T, Guan W M, Wang X . Mater. Sci. Technol., 2017,33:198.
[25]
Inyang M I, Gao B, Yao Y, Xue Y W, Zimmerman A, Mosa A, Pullammanappallil P, Ok Y S ,Cao X. Crit. Rev. Environ. Sci. Tec, 2016,46(4):406.
[26]
Zodi S, Louvet J N, Michon C, Potier O, Pons M N, Lapicque F ,Leclerc J P. Sep. Purif. Technol, 2011,81(1):62.
[27]
Peng L H, Dai H L, Wu Y F, Lu X W . Chemosphere, 2018,197:768.
[28]
Wei C M, Palaniandy P, Yusoff M S ,Dahlan I. Desalin. Water Treat, 2017,62:307.
[29]
公彦猛(Gong Y M), 姜伟立(Jiang W L), 李爱民(Li A M), 范亚明(Fan Y M), 常闻捷(Chang W J). . 工业水处理(Industrial Water Treatment), 2017,37(5):20.
[30]
施云芬(Shi Y F), 魏冬雪(Wei D X), 奚海军(Xi H J), 杨锐(Yang R), 徐芸菲(Xu Y F). . 硅酸盐通报(Bulletin of The Chinese Ceramic Society), 2015,34(2):481.
[31]
Gu Q Y, Wu G ,Lu X N. Adv. Mater. Res, 2012,573:648.
[32]
曾长庆(Zeng C Q), 谢木章(Xie M Z), 宋玉华(Song Y H), 李美银(Li M Y), 金成清(Jin C Q), 张启亮(Zhang Q L), 韩先成(Han X C), 陈晃新(Chen H X), 蒲怀均(Pu H J), 吴宝生(Wu B S). . 清华大学学报(自然科学版)(Journal of Tsinghua University(Science and Technology)), 1975,(01):117.
[33]
Yan S, Huo W L, Yang J L, Zhang X Y, Wang Q G, Wang L, Pan Y M, Huang Y. Powder Technol ., 2018,329:260.
[34]
Haider A J ,Al-Rsool R A, Haider M J. Plasmonics, 2018,13:1649.
[35]
Zhang Y, Jing Z Z, Kameda T, Yoshioka T. RSCAdv., 2016,6(32):26765.
[36]
Peng H H, Chen J, Jiang Y, Li M, Feng L, Losic D, Dong F, Zhang Y X . Colloid Interface Sci., 2016,484:1. https://www.ncbi.nlm.nih.gov/pubmed/27572609

doi: 10.1016/j.jcis.2016.08.057 pmid: 27572609
[37]
Zhan S L, Lin J X, Fang M H ,Qian X Q. Rare Met. Mater. Eng, 2008,37:644.
[38]
Zhang Y Z, Li J, Cheng X J, Bian W, Chen G H, Li Y, Li W J ,Zheng Z M. RSC Adv, 2016,6(56):51337.
[39]
Jia X B, Wei H L, Shi Y T, Shi Y R ,Liu Y F. Eur. Phys. J. D, 2017,71(12):314.
[40]
Sheshdeh R K, Abbasizade S , Nikou M R K,Badii K,Sharafi M S.J . Environ. Health Sci. Eng., 2014,12:148. https://www.ncbi.nlm.nih.gov/pubmed/25614826

doi: 10.1186/s40201-014-0148-9 pmid: 25614826
[41]
Tzvetkova P G, Nickolov R N, Tzvetkova C T, Bozhkov O D, Voykova D K . Chem. Technol. Metall., 2016,51(2):202.
[42]
Chen S T, Tsai Y P, Ciou J H, Huang Z Y, Lin W C, Shiu H . Renew. Energ 2017,101:311.
[43]
Gao Y W, Duan N, Wu K M, Shen L J . Ecol. Rural Environ., 2012,28(6):706.
[44]
Xiong W H, Peng J . Water Air Soil Poll., 2011,215:645.
[45]
范艺(Fan Y), 王哲(Wang Z), 赵连勤(Zhao L Q), 吴德意(Wu D Y) . 环境科学(Environmental Science), 2017,38:1490.
[46]
彭进平(Peng J P), 赖焕然(Lai H R), 程高(Cheng G), 杜青(Du Q) . 生态环境学报(Ecology and Environment), 2010,19:1936.
[47]
Xia P, Wang X J, Wang X, Wang X; Zhang J; Wang H; Song J K; Ma R G; Wang J Y; Zhao J F . J. Chem. Eng. Data, 2016,62(1):226.
[48]
段宁(Duan N), 张银凤(Zhang Y F), 明谦(Ming Q) . 硅酸盐通报(Bulletin of The Chinese Ceramic Society). 2014,33:308.
[49]
任华峰(Ren H F), 苗英霞(Miao Y X), 邱金泉(Qiu J Q), 张爱君(Zhang A J), 姜天翔(Jiang T X), 成玉(Cheng Y), 王静(Wang J), 张雨山(Zhang Y S) . 化工进展(Chemical Industry and Engineering Progress), 2014,33:238.
[50]
王文华(Wang W H), 姜天翔(Jiang T X), 张晓青(Zhang X Q), 邱金泉(Qiu J Q), 王静(Wang J), 张雨山(Zhang Y S) . 化学工业与工程(Chemical Industry and Engineering), 2015,32:41.
[51]
Komkiene J ,Baltrenaite E. Int. J. Environ. Sci. Technol, 2016,13(2):471.
[52]
Zou Y D, Wang X X, Khan A, Wang P Y, Liu Y H, Alsaedi A, Hayat T ,Wang X K. Environ. Sci. Technol, 2016,50(14):7290.
[53]
Malar S, Vikram S S, Favas P J, Perumal V . Bot. Stud 2016,55(1):54.
[54]
Ohkubo M, Miyamoto A, Shiraishi M . Vet. Med. Sci., 2016,78(5):761. https://www.ncbi.nlm.nih.gov/pubmed/26781706

doi: 10.1292/jvms.15-0620 pmid: 26781706
[55]
Govarthanan M, Mythili R, Selvankumar T, Kamala-Kannan S, Choi D ,Chang Y C. Biotechnol. Bioprocess Eng, 2017,22(2):186.
[56]
Yang X P, Li Q, Tang Z, Zhang W W, Yu G H, Shen Q R ,Zhao F J. Waste Manage, 2017,64:333.
[57]
Kobielska P A, Howarth A J, Farha O K ,Nayak S. Coordin. Chem. Rev, 2018,358:92.
[58]
Fu F L, Wang Q . Environ. Manage., 2011,92(3):407. https://www.ncbi.nlm.nih.gov/pubmed/21138785

doi: 10.1016/j.jenvman.2010.11.011 pmid: 21138785
[59]
González-Muñoz M J, Rodríguez M A, Luque S, Álvarez J R . Desalination, 2006,200:742.
[60]
刘绍忠(Liu S Z) . 工业水处理(Industrial Water Treatment), 2010,30:86.
[61]
Gola D, Malik A, Shaikh Z A, Sreekrishnan T R . Environ. Processes, 2016,3(4):1063.
[62]
Sud D, Mahajan G ,Kaur M P. Bioresour. Technol, 2008,99(14):6017.
[63]
Phetphaisit C W, Yuanyang S, Chaiyasith W C . Hazard. Mater., 2016,301:163. https://www.ncbi.nlm.nih.gov/pubmed/26348149

doi: 10.1016/j.jhazmat.2015.08.056 pmid: 26348149
[64]
Wen Y M ,Teng H H. Adv. Mater. Res, 2014,1010:523.
[65]
Sheng G D, Wang S W, Hu J, Li Y, Dong Y H ,Wang X K. Colloids Surf. A, 2009,339(1):159.
[66]
郑广伟(Zheng G W), 杜玉成(Du Y C), 侯瑞琴(Hou R Q), 孙广兵(Sun G B), 王金淑(Wang J S), 吴俊书(Wu J S) . 无机化学学报(Chinese Journal of Inorganic Chemistry), 2015,31(5):930.
[67]
叶力佳(Ye L J), 杜玉成(Du Y C) . 矿冶(Mining & Metallurgy), 2005,14:69.
[68]
Crane R A, Sapsford D J . Chemosphere, 2018,202:339.
[69]
Fang J, Gu J J, Liu Q L, Zhang W, Su H L, Zhang D. ACS Appl . Mater. Interfaces, 2018,10(23):19649.
[70]
Ayati A, Ahmadpour A, Bamoharram F F, Heravi M M ,Rashidi H. Chin. J. Catal, 2011,32(6):978.
[71]
Xin L, Yu J G, Wageh S, Al-Ghamdi A A, Xie J Small, 2016,12(48):6640. https://www.ncbi.nlm.nih.gov/pubmed/27805773

doi: 10.1002/smll.201600382 pmid: 27805773
[72]
Tian J, Wu Z, Liu Z, Yu C L, Yang K, Zhu L H, Huang W Y ,Zhou Y. Chin. J. Catal, 2017,38(11):1899.
[73]
He H B, Xue S S, Wu Z, Yu C L, Yang K, Peng G M, Zhou W Q ,Li D H. Chin. J. Catal, 2016,37(11):1841.
[74]
Yu C L, Zhou W Q, Liu H, Liu Y ,Dionysiou D D . Chem. Eng. J, 2016,287:117.
[75]
Fagan R, McCormack D E, Dionysiou D D, Pillai S C. Mater. Sci. Semicond. Process., 2016,42:2.
[76]
Yu C L, Wei L F, Zhou W Q, Dionysiou D D, Zhu L H, Shu Q, Liu H . Chemosphere, 2016,157:250.
[77]
Xue S S, He H B, Fan Q Z, Yu C L, Yang K, Huang W Y, Zhou Y, Xie Y . Environ. Sci., 2017,60:70.
[78]
Yu C L, Wu Z, Liu R Y, Dionysiou D D, Yang K, Wang C Y, Liu H . Appl. Catal B, 2017,209:1.
[79]
Mercado-Borrayo B M, González-Chávez J L, Ramírez-Zamora R M, Schouwenaars R . Sustain. Metall., 2018,4(1):50.
[80]
Chen Y ,Liu K R . Chem. Eng. J, 2016,302:682.
[81]
Barbosa I A, Zanatta L D, Espimpolo D M, da Silva D L, Nascimento L F, Zanardi F B, de Sousa Filho P C, Serra O A, Iamamoto Y. Solid State Sci., 2017,72:14.
[82]
Sun Z M, Li C Q, Yao G Y ,Zheng S L. Mater. Des, 2016,94:403.
[83]
龚久炎(Gong J Y), 宋文东(Song W D), 陈嘉琳(Chen J L), 李世杰(Li S J), 蔡璐(Cai L), 纪丽丽(Ji L L) . 化工进展(Chemical Industry and Engineering Progress), 2017,36:3309.
[84]
李焕(Li H), 张青红(Zhang Q H), 王宏志(Wang H Z), 李耀刚(Li Y G) . 硅酸盐学报(Journal of the Chinese Ceramic Society), 2013,41:567.
[85]
Wang D J, Shen H D, Guo L, He X M, Zhang J, Fu F . Inorg. Mater., 2016,31:881.
[86]
Tanniratt P, Wasanapiarnpong T, Mongkolkachit C, Sujariworakun P . Ceram. Int 2016,42:17605.
[87]
苏营营(Su Y Y), 于艳卿(Yu Y Q), 杨沛珊(Yang P S), 王新亭(Wang X T), 朱校斌(Zhu X B). . 中国环境科学(China Environmental Science), 2009,29(11):1171.
[88]
汪滨(Wang B), 张广心(Zhang G X), 郑水林(Zheng S L), 王娇娜(Wang J L), 李从举(Li C J). . 硅酸盐学报(Journal of the Chinese Ceramic Society), 2016,44:1192.
[89]
Kebichesenhadji O, Tingry S, Seta P, Benamor M . Desalination, 2018,258(1):59.
[90]
Idris A, Hassan N, Rashid R ,Ngomsik A F. Water Res, 2010,44(6):1683.
[91]
Yin R, Ling L, Xiang Y, Yang Y N, Bokare A D ,Shang C. Sep. Purif. Technol, 2017,190:53.
[92]
Du Y C, Wang X K, Wu J S, Qi C, Li Y . Particuology, 2018,40:123.
[93]
刘守新(Liu S X), 孙承林(Sun C L) . 物理化学学报(Acta Physico-Chemica Sinica), 2004,20(4):355.
[1] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[2] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[5] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[6] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[9] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[10] Yan Xu, Chungang Yuan. Preparation, Stabilization and Applications of Nano-Zero-Valent Iron Composites in Water Treatment [J]. Progress in Chemistry, 2022, 34(3): 717-742.
[11] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[12] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[13] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[14] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[15] Xing Zhan, Wei Xiong, Michael K.H Leung. From Wastewater to Energy Recovery: The Optimized Photocatalytic Fuel Cells for Applications [J]. Progress in Chemistry, 2022, 34(11): 2503-2516.