中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (2/3): 275-282 DOI: 10.7536/PC180730 Previous Articles   Next Articles

Application of Layered Double Hydroxides in Electrocatalysis

Lingli Zhou1, Ruigang Xie2, Linjiang Wang1,3,**()   

  1. 1. College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
    2. College of Chemistry and Environment Engineering, Baise University, Baise 533000, China
    3. Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials in Guangxi, Guilin 541004, China
  • Received: Online: Published:
  • Contact: Linjiang Wang
  • About author:
  • Supported by:
    National Natural Science Foundation of China(41572034); National Natural Science Foundation of China(41272064)
Richhtml ( 34 ) PDF ( 1649 ) Cited
Export

EndNote

Ris

BibTeX

The development of renewable clean energy and energy storage devices has attracted extensive attention because of bad condition of energy shortages and harsh environmental problems. Electrocatalytic reaction and catalyst materials play vital roles in the process of catalysis. Two dimensional layered materials have been widely used as electrode materials in electrocatalysis and energy storage devices thanks to their high specific surface area and unique electronic properties. Among them, layered double hydroxides(LDHs) have a good development prospect in the electrocatalysis process and preparation of catalyst materials due to their typical layered structure and unique advantages such as low price, easy to be prepared and functionalized, good tunability in the composition and structure, etc. This review summarizes the research progress of LDHs applied in catalyst for oxygen evolution reaction(OER), catalyst supporter and used as precursor to prepare electrocatalyst. Especially, we discusse the recent advances in tuning LDHs including electronic structure, morphology, interface interaction and synergetic catalytic effect with noble metal catalyst to improve the catalytic performance. In addition, we briefly describe the preparation of electrocatalysts using LDHs as precursors. Finally, the current difficulties and future research directions of LDHs are also discussed to give an outlook of their prospect in electrocatalysis.

Fig. 1 (a) Schematic illustration of NiFe-LDH nanoplates grown on nickel foam;(b) the SEM image of nickel foam; (c) the crystal structure of LDHs[40]. Copyright 2014, the Royal Society of Chemistry
Fig. 2 (a) Formation of hierarchical Ni-Fe LDH hollow nanoprisms by a self-templated strategy;(b) FESEM and(c) TEM images of the hierarchical Ni-Fe LDH hollow prisms obtained after hydrolysis reaction[31]. Copyright 2018, John Wiley&Sons, Inc.
Table 1 Summary of OER performance of LDHs obtained using different tuning methods
Fig. 3 (a) Schematic illustration showing the fabrication of p-CoP/CP from CoAl-LDH/CP; The HER performance for CoP/CP and p-CoP/CP after normalization of the electrochemical active area in(b) 1.0 M KOH(c) 0.5 M H2SO4 and(d) 1.0 M PBS[73]. Copyright 2018, the Royal Society of Chemistry.
[1]
Dunn B, Kamath H, Tarascon J M . Science, 2011,334(6058):928. https://www.ncbi.nlm.nih.gov/pubmed/22096188

doi: 10.1126/science.1212741 pmid: 22096188
[2]
Jia Z J, Wang Y, Qi T . RSC Adv., 2015,5(101):83314. https://www.ncbi.nlm.nih.gov/pubmed/29456838

doi: 10.1039/c5ra19497k pmid: 29456838
[3]
郭亚肖(Guo Y X), 商昌帅(Shang C S), 李敬(Li J), 汪尔康(Wang E K), . 中国科学:化学 (Scientia Sinica Chimica), 2018,48(08):926.
[4]
Wang W, Su C, Wu Y Z, Ran R, Shao Z P . Chem. Rev., 2013,113(10):8104. https://www.ncbi.nlm.nih.gov/pubmed/23902155

doi: 10.1021/cr300491e pmid: 23902155
[5]
Antolini E . J. Power Sources, 2007,170(1):1.
[6]
Tian J Q, Cheng N Y, Liu Q, Sun X P, He Y Q, Asiri A M . J. Mater. Chem. A, 2015,3(40):20056.
[7]
Liu P F, Yang S, Zhang B, Yang H G . ACS Appl. Mater. Interfaces, 2016,8(50):34474. https://www.ncbi.nlm.nih.gov/pubmed/27998124

doi: 10.1021/acsami.6b12803 pmid: 27998124
[8]
Li Y G, Dai H J . Chem. Soc. Rev., 2014,43(15):5257. https://www.ncbi.nlm.nih.gov/pubmed/24926965

doi: 10.1039/c4cs00015c pmid: 24926965
[9]
Dou S, Tao L, Huo J, Wang S Y, Dai L M . Energy Environ. Sci., 2016,9(4):1320.
[10]
Qiao J L, Liu Y Y, Hong F, Zhang J J . Chem. Soc. Rev., 2014,43(2):631. https://www.ncbi.nlm.nih.gov/pubmed/24186433

doi: 10.1039/c3cs60323g pmid: 24186433
[11]
Rogers C, Perkins W S, Veber G, Williams T E, Cloke R R, Fischer F R . J. Am. Chem. Soc., 2017,139(11):4052. https://www.ncbi.nlm.nih.gov/pubmed/28234002

doi: 10.1021/jacs.6b12217 pmid: 28234002
[12]
Coleman J N, Lotya M, O’Neill A, Bergin S D, King P J, Khan U, Young K, Gaucher A, De S, Smith R J, Shvets I V, Arora S K, Stanton G, Kim H Y, Lee K, Kim G T, Duesberg G S, Hallam T, Boland J J, Wang J J, Donegan J F, Grunlan J C, Moriarty G, Shmeliov A, Nicholls R J, Perkins J M, Grieveson E M, Theuwissen K, McComb D W, Nellist P D, Nicolosi V . Science, 2011,331(6017):568. https://www.ncbi.nlm.nih.gov/pubmed/21292974

doi: 10.1126/science.1194975 pmid: 21292974
[13]
高利芳(Gao L F), 宋忠乾(Song Z Q), 孙中辉(Sun Z H), 李风华(Li F H), 韩冬雪(Han D X), 牛利(Niu L) . 应用化学 (Chinese Journal of Applied Chemistry), 2018,35(03):247.
[14]
王丽娜(Wang L N), 徐玲玲(Xu L L), 张道令(Zhang D L) . 材料导报 (Materials Review), 2012,26(07):66.
[15]
贾潞(Jia L), 马建中(Ma J Z), 高党鸽(Gao D G), 吕斌(Lv B) . 化学进展 (Progress in Chemistry), 2018,30(1):295.
[16]
Jiang Z, Li Z P, Qin Z H, Sun H Y, Jiao X L, Chen D R . Nanoscale, 2013,5(23):11770. https://www.ncbi.nlm.nih.gov/pubmed/24121859

doi: 10.1039/c3nr03829g pmid: 24121859
[17]
Yilmaz G, Yam K M, Zhang C, Fan H J, Ho G W . Adv. Mater., 2017,29(26):1606814.
[18]
Wang X, Lin Y Y, Su Y, Zhang B, Li C J, Wang H, Wang L J . Electrochim. Acta, 2017,225:263.
[19]
Béléké A B, Higuchi E, Inoue H, Mizuhata M . J. Power Sources, 2014,247:572.
[20]
Zhang J T, Hu H, Li Z, Lou X W . Angew. Chem. Int. Ed., 2016,55(12):3982. https://www.ncbi.nlm.nih.gov/pubmed/26894940

doi: 10.1002/anie.201511632 pmid: 26894940
[21]
Nayak S, Mohapatra L, Parida K . J. Mater. Chem. A, 2015,3(36):18622.
[22]
Fan G, Li F, Evans D G, Duan X . Chem. Soc. Rev., 2014,43(20):7040. https://www.ncbi.nlm.nih.gov/pubmed/25001024

doi: 10.1039/c4cs00160e pmid: 25001024
[23]
Theiss F L, Ayoko G A, Frost R L . Appl. Surf. Sci., 2016,383:200.
[24]
Yu J F, Wang Q, O’Hare D, Sun L Y . Chem. Soc. Rev., 2017,46(19):5950. https://www.ncbi.nlm.nih.gov/pubmed/28766671

doi: 10.1039/c7cs00318h pmid: 28766671
[25]
Prevot V, Tokudome Y . J. Mater. Sci., 2017,52(19):11229.
[26]
Trotochaud L, Ranney J K, Williams K N, Boettcher S W . J. Am. Chem. Soc., 2012,134(41):17253. https://www.ncbi.nlm.nih.gov/pubmed/22991896

doi: 10.1021/ja307507a pmid: 22991896
[27]
龙霞(Long X), 王亚琼(Wang Y Q), 鞠敏(Ju M), 王政(Wang Z), 杨世和(Yang S H) . 应用化学 (Chinese Journal of Applied Chemistry), 2018,35(08):881.
[28]
Gong M, Li Y, Wang H, Liang Y, Wu J Z, Zhou J, Wang J, Regier T, Wei F, Dai H . J. Am. Chem. Soc., 2013,135(23):8452. https://www.ncbi.nlm.nih.gov/pubmed/23701670

doi: 10.1021/ja4027715 pmid: 23701670
[29]
Guzmán-Vargas A, Vazquez-Samperio J, Oliver-Tolentino M A, Ramos-Sánchez G, Flores-Moreno J L, Reguera E . Electrocatalysis, 2017,8(4):383.
[30]
Song F, Hu X L . Nat. Commun., 2014,5:4477. https://www.ncbi.nlm.nih.gov/pubmed/25030209

doi: 10.1038/ncomms5477 pmid: 25030209
[31]
Yu L, Yang J F, Guan B Y, Lu Y, Lou X W . Angew. Chem. Int. Ed., 2018,57(1):172. https://www.ncbi.nlm.nih.gov/pubmed/29178355

doi: 10.1002/anie.201710877 pmid: 29178355
[32]
Long X, Xiao S, Wang Z L, Zheng X L, Yang S H . Chem. Commun., 2015,51(6):1120. https://www.ncbi.nlm.nih.gov/pubmed/25467629

doi: 10.1039/c4cc08856e pmid: 25467629
[33]
Li P S, Duan X X, Kuang Y, Li Y P, Zhang G X, Liu W, Sun X M . Adv. Energy Mater., 2018,8(15):1703341.
[34]
Lu Z Y, Qian L, Tian Y, Li Y P, Sun X M, Duan X . Chem. Commun., 2016,52(5):908. https://www.ncbi.nlm.nih.gov/pubmed/26579843

doi: 10.1039/c5cc08845c pmid: 26579843
[35]
Yang Y, Dang L N, Shearer, M. J., Sheng H Y, Li W J, Chen J, Xiao P, Zhang Y H, Hamers, R. J., Jin S . Adv. Energy Mater., 2018,8(15):1703189.
[36]
Wang Y Y, Zhang Y Q, Liu Z J, Xie C, Feng S, Liu D D, Shao M F, Wang S Y . Angew. Chem. Int. Ed., 2017,56(21):5867. https://www.ncbi.nlm.nih.gov/pubmed/28429388

doi: 10.1002/anie.201701477 pmid: 28429388
[37]
Zhou P, Wang Y Y, Xie C, Chen C, Liu H W, Chen R, Huo J, Wang S Y . Chem. Commun., 2017,53(86):11778. https://www.ncbi.nlm.nih.gov/pubmed/29034926

doi: 10.1039/c7cc07186h pmid: 29034926
[38]
Wang Y, Xie C, Zhang Z Y, Liu D D, Chen R, Wang S Y . Adv. Funct. Mater., 2018,28(4):1703363.
[39]
杜世超(Du S C), 任志宇(Ren Z Y), 吴君(Wu J), 付宏刚(Fu H G) . 高等学校化学学报 (Chemical Journal of Chinese Universities), 2016,37(08):1415.
[40]
Lu Z Y, Xu W W, Zhu W, Yang Q, Lei X D, Liu J F, Li Y P, Sun X M, Duan X . Chem. Commun., 2014,50(49):6479. https://www.ncbi.nlm.nih.gov/pubmed/24817324

doi: 10.1039/c4cc01625d pmid: 24817324
[41]
Zhang J, Xie X L, Li C J, Wang H, Wang L J . RSC Adv., 2015,5(38):29757.
[42]
Lin Y Y, Xie X L, Wang X, Zhang B, Li C J, Wang H, Wang L J . Electrochim. Acta, 2017,246:406.
[43]
Li C, Lu H, Lin Y Y, Xie X L, Wang H, Wang L J . RSC Adv., 2016,6(99):97237. https://www.ncbi.nlm.nih.gov/pubmed/27774146

doi: 10.1039/C6RA21303K pmid: 27774146
[44]
Shao M F, Ning F Y, Zhao J W, Wei M, Evans D G, Duan X . Adv. Funct. Mater., 2013,23(28):3513.
[45]
王海燕(Wang H Y), 石高全(Shi G Q) . 物理化学学报 (Acta Physico-Chimica Sinica), 2018,34(01):22.
[46]
Ping J F, Wang Y X, Lu Q P, Chen B, Chen J Z, Huang Y, Ma Q L, Tan C L, Yang J, Cao X H, Wang Z J, Wu J, Ying Y B, Zhang H . Adv. Mater., 2016,28(35):7640. https://www.ncbi.nlm.nih.gov/pubmed/27356037

doi: 10.1002/adma.201601019 pmid: 27356037
[47]
Wang W, Liu Y C, Li J, Luo J, Fu L, Chen S L . J. Mater. Chem. A, 2018,6(29):14299.
[48]
Yu L, Zhou H Q, Sun J Y, Qin F, Yu F, Bao J M, Yu Y, Chen S, Ren Z F . Energy Environ. Sci., 2017,10(8):1820.
[49]
Zhang C, Zhao J, Zhou L, Li Z, Shao M, Wei M . J. Mater. Chem. A, 2016,4(29):11516.
[50]
Sakita A M P, Noce R D, Vallés E, Benedetti A V . Appl. Surf. Sci., 2018,434:1153.
[51]
Yang Q H, Xu Q, Jiang H L . Chem. Soc. Rev., 2017,46:4774. https://www.ncbi.nlm.nih.gov/pubmed/28621344

doi: 10.1039/c6cs00724d pmid: 28621344
[52]
Lu S L, Hu Y M, Wan S, McCaffrey R, Jin Y H, Gu H W, Zhang W . J. Am. Chem. Soc., 2017,139(47):17082. https://www.ncbi.nlm.nih.gov/pubmed/29095604

doi: 10.1021/jacs.7b07918 pmid: 29095604
[53]
Xie R G, Pan Y, Gu H W . RSC Adv., 2015,5(21):16497.
[54]
Capon A, Parson R . J. Electroanal. Chem. Interfacial Electrochem., 1973,44(1):1.
[55]
Wasmus S, Küver A . J. Electroanal. Chem., 1999,461(1):14.
[56]
Xie R G, Chen M Z, Wang J Q, Mei S J, Pan Y, Gu H W . RSC Adv., 2015,5(1):650.
[57]
Sulaiman J E, Zhu S, Xing Z, Chang Q, Shao M . ACS Catal., 2017,7(8):5134.
[58]
Jia Z J, Wang Y, Qi T . RSC Adv., 2015,5(76):62142.
[59]
Zhu H Y, Gu C D, Ge X, Tu J P . Electrochim. Acta, 2016,222:938.
[60]
Zhang F F, Wang Z Y, Xu K Q, Xia J F, Liu Q Y, Wang Z H . Int. J. Hydrogen Energy, 2018,43(33):16302.
[61]
Anantharaj S, Karthick K, Venkatesh M, Simha T V S V, Salunke A S, Ma L, Liang H, Kundu S . Nano Energy, 2017,39:30.
[62]
Wang D D, Chen X, Evans D G, Yang W S . Nanoscale, 2013,5(12):5312. https://www.ncbi.nlm.nih.gov/pubmed/23681343

doi: 10.1039/c3nr00444a pmid: 23681343
[63]
Long X, Li G X, Wang Z L, Zhu H Y, Zhang T, Xiao S, Guo W Y, Yang S H . J. Am. Chem. Soc., 2015,137(37):11900. https://www.ncbi.nlm.nih.gov/pubmed/26338434

doi: 10.1021/jacs.5b07728 pmid: 26338434
[64]
朱永明(Zhu Y M), 姜云鹏(Jiang Y P), 胡会利(Hu H L) . 化学进展 (Progress in Chemistry), 2017,29(11):1422.
[65]
Wang S L, Hou M, Zhao Q, Jiang Y Y, Wang Z, Li H Z, Fu Y, Shao Z G . J. Energy Chem., 2017,26(1):168. https://www.ncbi.nlm.nih.gov/pubmed/26598463

doi: 10.1016/j.bmcl.2015.11.006 pmid: 26598463
[66]
Hao S, Yang L B, Liu D N, Kong R M, Du G, Asiri A M, Yang Y C, Sun X P . Chem. Commun., 2017,53(42):5710. https://www.ncbi.nlm.nih.gov/pubmed/28487917

doi: 10.1039/c7cc01680h pmid: 28487917
[67]
Zhou L, Shao M F, Wei M, Duan X . J. Energy Chem., 2017,26(6):1094.
[68]
Zhao Y F, Jia X D, Chen G B, Shang L, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T R . J. Am. Chem. Soc., 2016,138(20):6517. https://www.ncbi.nlm.nih.gov/pubmed/27159825

doi: 10.1021/jacs.6b01606 pmid: 27159825
[69]
Zhou L, Jiang S, Liu Y K, Shao M F, Wei M, Duan X . ACS Appl. Energy Mater., 2018,1(2):623.
[70]
姜媛媛(Jiang Y Y), 陈传霞(Chen C X), 倪朋娟(Ni P J), 逯一中(Lu Y Z) . 分析化学 (Chinese Journal of Analytical Chemistry), 2018,46(04):550.
[71]
Gao L C, Chen S, Zhang H W, Zou Y H, She X L, Yang D J, Zhao Q S, Zhao X L . In. J. Hydrogen Energy, 2018,43(30):13904.
[72]
Sun H M, Xu X B, Yan Z H, Chen X, Jiao L F, Cheng F Y, Chen J . J. Mater. Chem. A, 2018,6:22062
[73]
Zeng Y, Wang Y, Huang G, Chen C, Huang L, Chen R, Wang S . Chemical Communications, 2018,54(12):1465. https://www.ncbi.nlm.nih.gov/pubmed/29355259

doi: 10.1039/c7cc08838h pmid: 29355259
[74]
Alexander A M, Hargreaves J S J . Chem. Soc. Rev., 2010,39(11):4388. https://www.ncbi.nlm.nih.gov/pubmed/20526487

doi: 10.1039/b916787k pmid: 20526487
[75]
Xie J F, Xie Y . Chem. Eur. J., 2016,22(11):3588. https://www.ncbi.nlm.nih.gov/pubmed/26494184

doi: 10.1002/chem.201501120 pmid: 26494184
[76]
Jia X D, Zhao Y F, Chen G B, Shang L, Shi R, Kang X F, Waterhouse G I N, Wu L Z, Tung C H, Zhang T R . Adv. Energy Mater., 2016,6(10):1502585. http://doi.wiley.com/10.1002/aenm.201502585

doi: 10.1002/aenm.201502585
[77]
Zhu H L, Jiang R, Chen X Q, Chen Y G, Wang L Y . Sci. Bull., 2017,62(20):1373. https://linkinghub.elsevier.com/retrieve/pii/S2095927317304802

doi: 10.1016/j.scib.2017.09.012
[78]
Jin S . ACS Energy Lett., 2017,2(8):1937. https://pubs.acs.org/doi/10.1021/acsenergylett.7b00679

doi: 10.1021/acsenergylett.7b00679
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[6] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[7] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[8] Qiyue Yang, Qiaomei Wu, Jiarong Qiu, Xianhai Zeng, Xing Tang, Liangqing Zhang. Catalytic Conversion of Bio-Based Platform Compounds to Fufuryl Alcohol [J]. Progress in Chemistry, 2022, 34(8): 1748-1759.
[9] Bin Jia, Xiaolei Liu, Zhiming Liu. Selective Catalytic Reduction of NOx by Hydrogen over Noble Metal Catalysts [J]. Progress in Chemistry, 2022, 34(8): 1678-1687.
[10] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[13] Yangyang Liu, Zigang Zhao, Hao Sun, Xianghui Meng, Guangjie Shao, Zhenbo Wang. Post-Treatment Technology Improves Fuel Cell Catalyst Stability [J]. Progress in Chemistry, 2022, 34(4): 973-982.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.