中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 210-222 DOI: 10.7536/PC180434 Previous Articles   

• Review •

Sodium-Based Solid-State Electrolyte and Its Applications in Energy

Qingkai Zhang, Feng Liang*(), Yaochun Yao, Wenhui Ma, Bin Yang, Yongnian Dai   

  1. Faculty of Metallurgy and Energy Engineering, National Engineering Laboratory for Vacuum Metallurgy, National Key Laboratory for Clean Application of Complex Non-ferrous Metal Resources, Kunming University of Science and Technology, Kunming 650093, China
  • Received: Revised: Online: Published:
  • Contact: Feng Liang
  • About author:
    ** Corresponding author e-mail:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(51704136); The work was supported by the National Natural Science Foundation of China(11765010); The Application of Basic Research Projects of Yunnan Province(2016FB087); The Free Exploration Foundation of Yunnan Province(2017HA006)
Richhtml ( 44 ) PDF ( 1658 ) Cited
Export

EndNote

Ris

BibTeX

Due to the low cost and high safety of the new sodium battery system using sodium-based solid electrolyte, the new sodium battery system has great potential for its applications in energy storage field. High ionic conductivity and stability of sodium-based solid electrolytes are prerequisites for its applications in new sodium battery systems. In recent years, people have significantly improved the ionic conductivity and stability of sodium-based solid electrolytes by improving preparation methods and doping modifications. In addition, the new sodium battery system needs to solve the interface problems such as poor interface contact and poor interface stability between the solid state electrolyte and the electrode. In this paper, we firstly summarize the research progress in ionic conductivity and stability of β″-Al2O3, NASICON, sulfides, and polymer of sodium-based solid electrolytes. Then the applications of sodium-based solid electrolytes in sodium-sulfur batteries, hybrid sodium-air batteries, and all-solid-state sodium-ion batteries are introduced. In view of the interface problems, the solving strategies are systematically discussed. The future large-scale applications in energy of the new sodium battery system based on solid state electrolytes need breakthroughs in many aspects such as battery materials, interfaces, and battery design.

Fig.1 Sodium-based solid-state electrolytes and related battery system diagram[36]
Table 1 Performance comparison of different sodium-based solid electrolytes
Fig.2 Idealized structure diagram: (a) β-Al2O3; (b) β″-Al2O3[3]
Fig.3 NASICON cell: (a) diamond structure; (b) monoclinic structure[4]
Fig.4 Crystal structure of Na11Sn2PPS12[33]
Fig.5 Schematic diagram of amorphous sodium ion transport in PEO[40]
Fig.6 Summary of ionic conductivity of sodium-based solid-state electrolytes
Fig.7 (a) Structure of sodium-sulfur battery[6]; (b) Battery cycling performance at current densities of 0.25 mA/cm2[73]
Fig.8 (a) Organic/water mixed metal-air battery structure diagram; (b) I-V curve (solid line) and energy density-voltage curve (dotted line) of the battery[76]
Fig.9 (a) The structure of all-solid-state battery; (b) cycling performance and columbic efficiency of the NVP/IL/SE/Na solid-state battery (10 C, 25 ℃) [27]
[1]
方铮 (Fang Z), 曹余良 (Cao Y L), 胡勇胜 (Hu Y S), 陈立泉 (Chen L Q), 黄学杰 (Huang X J) . 储能科学与技术( Energy Storage Science and Technology), 2016,5(2):149.
[2]
刘丽露 (Liu L L), 戚兴国 (Qi X G), 邵元骏 (Shao Y J), 潘都 (Pan D), 白莹 (Bai Y), 胡勇胜 (Hu Y S), 李泓 (Li H), 陈立泉 (Chen L Q) . 储能科学与技术( Energy Storage Science and Technology), 2017,6(5):961.
[3]
Lee D H, Lee S T, Kim J S, Lim S K . Materials Research Bulletin, 2017,96:143.
[4]
Samiee M, Radhakrishnan B, Rice Z, Deng Z, Meng Y S, Ong S P, Luo J . Journal of Power Sources, 2017,347:229.
[5]
Chu I H, Kompella C S, Nguyen H, Zhu Z, Hy S, Deng Z, Meng Y S , Ong Scientific Reports, 2016,6:33733.
[6]
Min J K, Stackpool M, Shin C H, Lee C H . Journal of Power Sources, 2015,293(3):835.
[7]
林祖纕 (Lin Z X), 郭祝崑 (Guo Z K), 孙成文 (Sun W C), 李世椿 (Li S C), 陈昆刚 (Chen K G), 田顺宝 (Tian S B), 严冬生 (Yang D S). 快离子导体 (Fast Ion Conductor). 上海: 上海科学技术出版社 (Shanghai: Shanghai Scientific Technology Press), 1983. 141.
[8]
Tel’nova G B, Solntsev K A . Inorganic Materials, 2015,51(3):257.
[9]
Shan S J, Yang L P, Liu X M, Wei X L, Yang H, Shen X D . Journal of Alloys and Compounds, 2013,563:176.
[10]
Liang F, Hayashi K . Journal of the Electrochemical Society, 2015,162(7):A1215.
[11]
Chen G Y, Lu J C, Zhou X H, Chen L X, Jiang X B . Ceramics International, 2016,42(14):16055.
[12]
Zhang G X, Wen Z Y, Wu X W, Zhang J C, Ma G Q, Jin J . Journal of Alloys and Compounds, 2014,613(1):80.
[13]
Wei X L, Xia Y, Liu X M, Yang H, Shen X D . Electrochimica Acta, 2014,136:250.
[14]
Xu D, Jiang H, Li Y, Li L, Li M, Hai O . European Physical Journal Applied Physics, 2016,74(1):250.
[15]
Yang L P, Shan S J, Wei X L, Liu X M, Yang H, Shen X D . Ceramics International, 2014,40(7):9055.
[16]
Wenzel S, Leichtweiss T, Weber D A, Sann J, Zeier W G, Janek J . ACS Applied Materials and Interfaces, 2016,8(41):28216.
[17]
Kim Y, Kim H, Park S, Seo I, Kim Y . Electrochimica Acta, 2016,191:1.
[18]
Goodenough J B, Hong Y P, Kafalas J A . Materials Research Bulletin, 1976,11(2):203.
[19]
Kang H B, Cho N H . Journal of Materials Science, 1999,34(20):5005.
[20]
Park H, Jung K, Nezafati M, Kim C S, Kang B . ACS Applied Materials and Interfaces, 2016,8(41):27814.
[21]
Ma Q, Guin M, Naqash S, Tsai C L, Tietz F . Chemistry Materials, 2016,28:4821.
[22]
Guin M, Tietz F . Journal of Power Sources, 2015,273:1056.
[23]
Jolley A G, Taylor D D, Schreiber N J, Wachsman E D . Journal of the American Ceramic Society, 2015,98(9):185.
[24]
Jolley A G, Cohn G, Hitz G T, Wachsman E D . Ionics, 2015,21(11):3031.
[25]
Ruan Y, Song S, Liu J, Liu P, Cheng B, Song X, Battaglia V . Ceramics International, 2017,43:7810.
[26]
Khakpour Z . Electrochimica Acta, 2016,196:337.
[27]
Zhang Z, Zhang Q, Shi J, Chu Y S, Yu X, Xu K, Ge M, Yan H, Li W, Gu L, Hu Y S, Li H, Yang X Q, Chen L, Huang X . Advanced Energy Materials, 2017,7:1601196.
[28]
Fuentes R O, Figueiredo F, Marques F M B, Franco J I . Solid State Ionics, 2001,139(3/4):309.
[29]
Jung J I, Kim D, Kim H, Jo Y N, Park J S, Kim Y . ACS Applied Materials and Interfaces, 2017,9(1):304.
[30]
Zhang L, Yang K, Mi J, Lu L, Zhao L, Wang L, Li Y, Zeng H . Advanced Energy Materials, 2016,5(24):39.
[31]
Zhang L, Zhang D, Yang K, Yan X, Wang L, Mi J, Xu B, Li Y . Advanced Science, 2016,3(10):1600089.
[32]
Richards W D, Tsujimura T, Miara L J, Wang Y, Kim J C, Ong S P, Uechi I, Suzuki N, Ceder G . Nature Communications, 2016,7:11009.
[33]
Duchardt M, Ruschewitz U, Adams S, Dehnen S, Roling B, Dehnen S, Roling B . Angewandte Chemie, 2018,130:1365.
[34]
Hayashi A, Noi K, Sakuda A, Tatsumisago M . Nature Communications, 2012,3(3):856.
[35]
Hayashi A, Noi K, Tanibata N, Nagao M, Tatsumisago M . Journal of Power Sources, 2014,258(14):420.
[36]
Martin S W, Bischoff C, Schuller K . Journal of Physical Chemistry B, 2015,119(51):15738.
[37]
Yu Z, Shang S, Seo J, Wang D, Luo X, Huang Q, Chen S, Lu J, Li X, Liu Z K, Wang D . Advanced Materials, 2017,29:1605561.
[38]
Wang H, Chen Y, Hood Z D, Sahu G, Pandian A S, Keum J K, An K, Liang C . Angewandte Chemie International Edition, 2016,128(30):8551.
[39]
Armand M B, Chabagno J M, Duclot M . Scotland: Second International Meeting on Solid Electrolytes, 1978. 20.
[40]
Aobing D U, Chai J, Zhang J, Liu Z, Cui G . Energy Storage Science and Technology, 2016,6:627.
[41]
Chandra A . Indian Journal of Pure and Applied Physics, 2016,54(9):583.
[42]
Anantha P S, Hariharan K . Solid State Ionics, 2005,176(1/2):155.
[43]
Qi X, Ma Q, Liu L, Hu Y S, Li H, Zhou Z, Huang X, Chen L . ChemElectroChem, 2016,3(11):1741.
[44]
Moreno J S, Armand M, Berman M B, Greenbaum S C, Scrosati B, Panero S . Journal of Power Sources, 2014,248(4):695.
[45]
Chandra A . Indian Journal of Pure and Applied Physics, 2016,54(10):676.
[46]
Ni'Mah Y L, Cheng M Y, Cheng J H, Rick J, Hwang B J . Journal of Power Sources, 2015,278:375.
[47]
Zhang Z, Zhang Q, Ren C, Luo F, Ma Q, Hu Y S, Li H, Zhou Z, Huang X, Chen L . Journal of Materials Chemistry A, 2016,4:15823.
[48]
Reddy M J, Sreekanth T, Rao U V S . Solid State Ionics, 1999,126(1):55.
[49]
Chandrasekaran R, Selladurai S . Journal of Solid State Electrochemistry, 2001,5(5):355.
[50]
Colò F, Bella F, Nair J R, Destro M, Gerbaldi C . Electrochimica Acta, 2015,174:185.
[51]
Song S, Kotobuki M, Zheng F, Xu C, Savilov S V, Hu N, Lu L, Wang Y, Li W D Z . Journal of Materials Chemistry A, 2017,5:6424.
[52]
Lee S, Park S J, Kim S . Res Chem Intermed, 2017,43:5403.
[53]
Reddy M J, Sreekanth T, Chandrashekar M, Rao U V S . Journal of Materials Science, 2000,35(11):2841.
[54]
Kumar K N, Sreekanth T, Reddy M J, Rao U V S . Journal of Power Sources, 2001,101(1):130.
[55]
Aziz S B, Abdullah O G, Rasheed M A . Journal of Materials Science Materials in Electronics, 2017,28(17):12873.
[56]
Bhargav P B, Mohan V M, Sharma A K, Rao V R . Journal of Applied Polymer Science, 2008,108(1):510.
[57]
Bhargav P B, Mohan V M, Sharma A K, Rao V R . International Journal of Polymeric Materials, 2007,56(6):579.
[58]
Bhargav P B, Mohan V M, Sharma A K, Rao V R . Current Applied Physics, 2009,9(1):165.
[59]
Jyothi N K, Kumar K V, Sundari G S, Murthy P N . Indian Journal of Physics, 2015,90(3):1.
[60]
Yang Y Q, Chang Z, Li M X, Wang X W, Wu Y P . Solid State Ionics, 2015,269:1.
[61]
Badr S, Sheha E, Bayomi R M, Shaarawy M G E . Ionics, 2010,16(3):269.
[62]
Vignarooban K, Badami P, Dissanayake M A K L, Ravirajan P, Kanan AM . Ionics, 2017,23:2817.
[63]
Wang F, Wang X, Chang Z, Wu X, Liu X, Fu L, Zhu Y, Wu Y, Huang W . Advanced Materials, 2015,27:6962.
[64]
温兆银 (Wen Z Y), 俞国勤 (Yu G Q), 顾中华 (Gu Z H), 何维国 (He W G), 韩金铎 (Han J D), 张宇 (Zhang Y), 刘宇 (Liu Y), 楼晓东 (Lou X D). 供用电( Distribution and Utilization), 2010,27(6):25.
[65]
胡英瑛 (Hu Y Y), 温兆银 (Wen Z Y), 芮琨 (Rui K), 吴相伟 (Wu X W) . 储能科学与技术( Energy Storage Science and Technology), 2013,2(2):81.
[66]
Jung K, Colker J P, Cao Y, Kim G, Park Y C, Kim C S . Journal of Power Sources, 2016,324:665.
[67]
Kim I, Kim C H, Choi S, Ahn J P, Ahn J H, Kim K W, Cairns E J, Ahn H J . Journal of Power Sources, 2016,307:31.
[68]
Wei S, Xu S, Agrawral A, Choudhury S, Lu Y, Tu Z, Ma L, Archer L . Nature Communications, 2016,7:11722.
[69]
Tanibata N, Deguchi M, Hayashi A, Tatsumisago M . Chemistry of Materials, 2017,29:5232.
[70]
Kim I, Park J Y, Kim C H, Park J W, Ahn J P, Ahn J H, Kim K W, Ahn H J . Journal of the Electrochemical Society, 2016,163(5):A611.
[71]
Wenzel S, Metelmann H, Raiß C, Dürr A K, Janek J, Adelhelm P . Journal of Power Sources, 2013,243(6):758.
[72]
Lu X, Kirby B W, Xu W, Li G, Kim J Y, Lemmon J P, Sprenkle V L, Yang Z . Energy and Environmental Science, 2012,6(1):299.
[73]
Luo W, Lin C, Zhao O, Noked M, Zhang Y, Rubloff G W, Hu L . Advanced Energy Materials, 2017,7:1601526.
[74]
Kohl M, Borrmann F, Althues H, Kaskel S . Advanced Energy Materials, 2016,6:1.
[75]
Song J, Jeong G, AhJung Lee, Park J H, Kim H, Kim Y J . ACS Applied Materials and Interfaces, 2015,7(49):27206.
[76]
Hayashi K, Shima K, Sugiyama F . Journal of the Electrochemical Society, 2013,160(9):A1467.
[77]
Yao K, Feng L, Hayashi K . Electrochimica Acta, 2016,218:119.
[78]
Tian Y, Shi T, Richards W D, Li J, Kim J C, Bo S H, Ceder G . Energy andEnvironmental Sci., 2017,10:1150.
[79]
Rao R P, Chen H, Wong L, Adams S . Journal of Materials Chemistry A, 2017,5:3377.
[80]
Yubuchi S, Hayashi A, Tatsumisago M . Chemistry Letters, 2015,44(47):884.
[81]
Zhu Y S, Li L L, Li C Y, Zhou L, Wu Y P . Solid State Ionics, 2016,289:113.
[82]
Zhou W, Gao H, Goodenough J B . Advanced Energy Materials, 2016,6:1501802.
[83]
Gao H, Xin S, Xue L, Goodenough J B . Chem. 4:833.
[84]
Zhou W, Li Y, Xin S, Goodenough J B . ACS Cent.Sci., 2017,3:52.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[3] Shuyang Yu, Wenlei Luo, Jingying Xie, Ya Mao, Chao Xu. Review on Mechanism and Model of Heat Release and Safety Modification Technology of Lithium-Ion Batteries [J]. Progress in Chemistry, 2023, 35(4): 620-642.
[4] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[5] Zhang Huidi, Li Zijie, Shi Weiqun. The Stability Enhancement of Covalent Organic Frameworks and Their Applications in Radionuclide Separation [J]. Progress in Chemistry, 2023, 35(3): 475-495.
[6] Zhang Xiaofei, Li Shenhao, Wang Zhen, Yan Jian, Liu Jiaqin, Wu Yucheng. Review on the First-Principles Calculation in Lithium-Sulfur Battery [J]. Progress in Chemistry, 2023, 35(3): 375-389.
[7] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[8] Chao Ji, Tuo Li, Xiaofeng Zou, Lu Zhang, Chunjun Liang. Two-Dimensional Perovskite Photovoltaic Devices [J]. Progress in Chemistry, 2022, 34(9): 2063-2080.
[9] Qi Qi, Peizhu Xu, Zhidong Tian, Wei Sun, Yangjie Liu, Xiang Hu. Recent Advances of the Electrode Materials for Sodium-Ion Capacitors [J]. Progress in Chemistry, 2022, 34(9): 2051-2062.
[10] Senlin Tang, Huan Gao, Ying Peng, Mingguang Li, Runfeng Chen, Wei Huang. Non-Radiative Recombination Losses and Regulation Strategies of Perovskite Solar Cells [J]. Progress in Chemistry, 2022, 34(8): 1706-1722.
[11] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[12] Mingjun Nan, Lin Qiao, Yuqin Liu, Huamin Zhang, Xiangkun Ma. A Review of Inorganic Aqueous Flow Battery [J]. Progress in Chemistry, 2022, 34(6): 1402-1413.
[13] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[14] Fangyuan Li, Junhao Li, Yujie Wu, Kaixiang Shi, Quanbing Liu, Hongjie Peng. Design and Preparation of Electrode Nanomaterials with “Yolk-Shell”Structure for Lithium/Sodium-Ion/Lithium-Sulfur Batteries [J]. Progress in Chemistry, 2022, 34(6): 1369-1383.
[15] Shiying Yang, Danyang Fan, Xiaojuan Bao, Peiyao Fu. Modification Mechanism of Zero-Valent Aluminum by Carbon Materials [J]. Progress in Chemistry, 2022, 34(5): 1203-1217.