中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (1): 191-200 DOI: 10.7536/PC180527 Previous Articles   Next Articles

• Review •

Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials

Lei Bai1,2, Yanfeng Wang1,2, Shuhui Huo1,2,**(), Xiaoquan Lu1,2,**()   

  1. 1. College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
    2. Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070, China;
  • Received: Revised: Online: Published:
  • Contact: Shuhui Huo, Xiaoquan Lu
  • About author:
    ** Corresponding author e-mail: (Shuhui Huo);
    (Xiaoquan Lu)
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(21305112); The Natural Science Foundation of Gansu Province(18JR3RA085); The Research Projects of Gansu Universities(2015A-027)
Richhtml ( 8 ) PDF ( 649 ) Cited
Export

EndNote

Ris

BibTeX

Food safety has received great attention due to its close connectivity with people’s health and the harmonious development of national economy and society. Trace amount of toxic and harmful compounds in food and water are potentially harmful to human health. Excellent adsorbent and efficient extraction have received more and more attention in food safety detection. Metal-organic frameworks (MOFs) are an emerging class of porous functional materials with high porosity, large surface area, easy structural design, adjustable pore size, as well as acceptable chemical and thermal stability. In the past, the research on MOFs mainly focused on the structural design. Recently, more and more attention has been focused on applications of MOFs in food safety analysis. Meanwhile, their high porosity, tunable surface functionalities, various metal and ligands, as well as diverse coordination modes make MOFs promising as adsorption material for SPE. The merits of MOFs and their functional materials, in particular, are high enrichment, excellent matrix interference resistance, good selectivity, and environmentally-friendly development. Interesting research of MOFs and their functional materials in the pretreatment of food and water samples are summarized.

Table 1 SPE for the detection of trace heavy metal in food samples[40,41,42,43,44,45,46,47,48,49,50,51]
Fig.1 (a) A schematic diagram of dithizone functionalized Fe3O4synthesis. (b) The schematic illustration of synthesis of magnetic MOF-DHz nanocomposite[40]
Fig.2 Molecular representations of PCN-222/MOF-545[50]
Table 2 SPE for the detection of antibiotics and hormones in food samples[52,53,54,55]
Table 3 SPE for the detection of pesticides in food samples[58,59,60,61]
Fig.3 Procedures of the preparation of MOF-C (A) and dispersive solid-phase extraction for benzoylurea insecticides (B)[59]
Table 4 SPE for the detection of persistent organic pollutants in food and water samples[63,64,65,66,67,68,69]
Fig.4 锈钢纤维丝水热法原位制备SPME双配体MOF bio-MOF-1 涂层[65]
Fig.5 SEM images of (A) stainless steel wire; (B) and (C) bio-MOF-1 SPME fiber. EDS elemental mapping images for bio-MOF-1 SPME fiber (DG)[65]
Fig.6 Schematic diagram for the application of Fe3O4@SiO2-MIL-101 MNPs as sorbent for MSPE[66]
Fig.7 Schematic diagram of pyrolytic in situ magnetization of MIL-100 (A) and analytical procedures for MSPE. (B)[67]
Fig.8 Synthesis of MOF@MON and fabrication of solid-phase microextraction fibers[69]
Fig.9 Scanning electron micrographs of MIL-101(a) and MIL-101@DMIP(b)[72]
[1]
Maya F, Cabello C P, Frizzarin R M, Estela J M, Palomino G T, Cerdà V . TrAC-Trend. Anal. Chem., 2017,90:142.
[2]
Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V . TrAC-Trend. Anal. Chem., 2016,80:641.
[3]
Andrade-Eiroa A, Canle M, Leroy-Cancellieri V, Cerdà V . TrAC-Trend. Anal. Chem., 2016,80:655.
[4]
Zhu Q L, Xu Q . Chem. Soc. Rev., 2014,43:5468.
[5]
Kitagawa S, Kitaura R, Noro S I . Angew. Chem. Int. Ed., 2004,43:2334.
[6]
Long J R, Yaghi O M . Chem. Soc. Rev., 2009,38:1213.
[7]
Spokoyny A M, Kim D, Sumrein A, Mirkin C A . Chem. Soc. Rev., 2009,38:1218.
[8]
Meek S T, Greathouse J A, Allendorf M D . Adv. Mater., 2011,23:249.
[9]
Li J R, Sculley J, Zhou H C . Chem. Rev., 2011,112:869.
[10]
Jiang H L, Xu Q . Chem.Commun, 2011,47:3351.
[11]
Sakata Y, Furukawa S, Kondo M, Hirai K, Horike N, Takashima Y, Uehara H, Louvain N, Meilikhov M, Tsuruoka T, Isoda S, Kosaka W, Sakata O, Kitagawa S . Science, 2013,339:193.
[12]
付艳艳 (Fu Y Y), 严秀平 (Yan X Ps) . 化学进展( Progress in Chemistry), 2013,25(2/3):221.
[13]
Yaghi O M, Li G, Li H . Nature, 1995,378:703.
[14]
Yaghi O M, Li H . J. Am. Chem. Soc., 1995,117:10401.
[15]
Furukawa H, Cordova K E, ÓKeeffe M, Yaghi O M . Science, 2013,80:341.
[16]
Ma S, Zhou H C . Chem. Commun., 2010,46:44.
[17]
Suh M P, Park H J, Prasad T K, Lim D W . Chem. Rev., 2012,112:782.
[18]
Murray L J, Dinca M, Long J R . Chem. Soc. Rev., 2009,38:1294.
[19]
Rosi N L, Eckert J, Eddaoudi M, Vodak D T, Kim J, ÓKeeffe M, Yaghi O M . Science, 2003,300:1127.
[20]
Zhao X, Xiao B, Fletcher A J, Thomas K M, Bradshaw D, Rosseinsky M J . Science, 2004,306:1012.
[21]
Sumida K, Rogow D L, Mason J A, McDonald T M, Bloch E D, Herm Z R, Bae T H, Long J R . Chem. Rev., 2011,112:724.
[22]
Yanai N, Kitayama K, Hijikata Y, Sato H, Matsuda R, Kubota Y, Takata M, Mizuno M, Uemura T, Kitagawa S . Nat. Mater, 2011,10:787.
[23]
Kreno L E, Leong K, Farha O K, Allendorf M, Van Duyne R P, Hupp J T . Chem. Rev., 2011,112:1105.
[24]
Chen B, Yang Y, Zapata F, Lin G, Qian G, Lobkovsky E B . Adv. Mater., 2007,19:1693.
[25]
Achmann S, Hagen G, Kita J, Malkowsky I, Kiener C, Moos R . Sensors, 2009,9:1574.
[26]
Yoon M, Srirambalaji R, Kim K . Chem. Rev, 2012,112:1196.
[27]
黎林清 (Li L Q), 吕迎 (Lv Y), 李军 (Li J), 董晓丽 (Dong X L), 高爽 (Gao S) . 化学进展( Progress in Chemistry), 2012,24(5):747.
[28]
邱健豪 (Qiu J H), 何明 (He M), 贾明民 (Jia M M), 姚建峰 (Yao J F) . 化学进展( sProgress in Chemistry), 2016,28(7):1016.
[29]
Yamada T, Otsubo K, Makiura R, Kitagawa H . Chem. Soc. Rev., 2013,42:6655.
[30]
Sadakiyo M, Yamada T, Kitagawa H . J. Am. Chem. Soc., 2009,131:9906.
[31]
Taylor J M, Mah R K, Moudrakovski I L, Ratcliffe C I, Vaidhyanathan R, Shimizu G K . J. Am. Chem. Soc., 2010,132:14055.
[32]
SadakiyoM, Okawa H, Shigematsu A, Ohba M, Yamada T, Kitagawa H . J. Am. Chem. Soc., 2012,134:5472.
[33]
Hurd J A, Vaidhyanathan R, Thangadurai V, Ratcliffe C I, Moudrakovski I L Shimizu G K H, . Nat. Chem., 2009,1:705.
[34]
Umeyama D, Horike S, Inukai M, Hijikata Y, Kitagawa S . Angew. Chem. Int. Ed., 2011,50:11706.
[35]
Horcajada P, Gref R, Baati T, Allan P K, Maurin G, Couvreur P, Férey G, Morris R E, Serre C . Chem.Rev, 2011,112:1232.
[36]
Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, Eubank J F, Heurtaux D, Clayette P, Kreuz C, Chang J S, Hwang Y K, Marsaud V, Bories P N, Cynober L, Gil S, Férey G, Couvreur P, Gref R . Nat. Mater, 2010,9:172.
[37]
Rocca J D, Liu D, Lin W . Acc. Chem. Res., 2011,44:957.
[38]
Zhou Y Y, Yan X P, Kim K N, Wang S W, Liu M G . J. Chromatogr. A, 2006,1116:172.
[39]
Habi S, Daba H . Pak J. Biol. Sci., 2009,12:1474.
[40]
Taghizadeh M, Asgharinezhad A A, Pooladi M, Barzin M, Abbaszadeh A, Tadjarodi A . Microchim. Acta, 2013,180:1073.
[41]
Ghorbani-Kalhor E, Hosseinzadeh-Khanmiri R, Babazadeh M, Abolhasani J, Hassanpour A . Can. J. Chem., 2015,93:518.
[42]
Hassanpour A, Hosseinzadeh-Khanmiri R, Babazadeh M, Abolhasani J, Ghorbani-Kalhor E. Food Addit . Contam. A, 2015,32:725.
[43]
Ghorbani-Kalhor E . Microchim. Acta, 2016,183:2639.
[44]
Tadjarodi A, Abbaszadeh A . Microchim. Acta, 2016,183:1391.
[45]
Babazadeh M, Hosseinzadeh-Khanmiri R, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A . Rsc Adv, 2015,5:19884.
[46]
Babazadeh M, Khanmiri R H, Abolhasani J, Ghorbani-Kalhor E, Hassanpour A . Bull. Chem. Soc. Jpn, 2015,88:871.
[47]
Safari M, Yamini Y, Masoomi M Y, Morsali A, Mani-Varnosfaderani A . Microchim. Acta, 2017,184:1555.
[48]
Abbaszadeh A, Tadjarodi A . Rsc Adv, 2016,6:113727.
[49]
Wu Y Z, Xu G H, Wei F D, Song Q, Tang T, Wang X, Hu Q . Micropor. Mesopor. Mat., 2016,235:204.
[50]
Kahkha M R R, Daliran S, Oveisi A R, Kaykhaii M, Sepehri Z . Food Anal. Methods, 2017,10:2175.
[51]
Tokalıoğlu S, Yavuz E, Demir S, Patat S . Food Chem., 2017,237:707.
[52]
Lin C L, Lirio S, Chen Y T, Lin C H, Huang H Y . Chem. Eur. J., 2014,20:3317.
[53]
Lirio S, Liu W L, Lin C L, Lin C H, Huang H Y . J. Chromatogr. A, 2016,1428:236.
[54]
Lan H Z, Pan D D, Sun Y Y, Guo Y X, Wu Z . Anal. Chim. Acta, 2016,937:53.
[55]
Wu M A, Ai Y H, Zeng B Z, Zhao F Q . J. Chromatogr. A, 2016,1427:1.
[56]
Cui X Y, Gu Z Y, Jiang D Q, Li Y, Wang H F, Yan X P . Anal. Chem., 2009,81:9771.
[57]
易军 ( Yi J), 李云春 (Li Y C), 弓振斌 (Gong Z B) . 化学进展( Progress in Chemistry), 2002,14(6):415.
[58]
Li N, Wang Z B, Zhang L Y, Nian L, Lei L, Yang X, Zhang H Q, Yu A M . Talanta, 2014,128:345.
[59]
Liu X L, Wang C, Wang Z C, Wu Q H, Wang Z . Microchim. Acta, 2015,182:1903.
[60]
Cai Q Q, Zhang L J, Zhao P, Lun X W, Li W, Guo Y, Hou X H . Microchem. J., 2017,130:263.
[61]
Xia L A, Liu L J, Xu X L, Zhu F F, Wang X L, Zhang K Y, Yang X C, You J M . New J. Chem., 2017,41:2241.
[62]
Kumar P, Paul A K, Deep A . Micropor. Mesopor. Mat., 2014,195:60.
[63]
Lin S C, Gan N, Qiao L, Zhang J B, Cao Y T, Chen Y J . Talanta, 2015,144:1139.
[64]
Lin S C, Gan N, Zhang J B, Qiao L, Chen Y J, Cao Y T . Talanta, 2016,149:266.
[65]
Huo S H, Yu J, Fu Y Y, Zhou P X . Rsc Adv., 2016,6:14042.
[66]
Huo S H, Yan X P . Analyst, 2012,137:3445.
[67]
Huo S H, An H Y, Yu J, Mao X F, Zhang Z, Bai L, Huang Y F, Zhou P X . J. Chromatogr. A, 2017,1517:18.
[68]
Rocío-Bautista P, Pino V, Ayala J H, Pasán J, Ruiz-Pérez C, Afonso A M . J. Chromatogr. A, 2016,1436:42.
[69]
Jia Y Q, Su H, Wang Z H, Elaine Wong Y L, Chen X F, Wang M L, Dominic Chan T W . Anal. Chem., 2016,88:9364.
[70]
Yang C X, Yan X P . Chinese J. Anal. Chem., 2013,41:1297.
[71]
王瑞莹 (Wang R Y), 张超艳 (Zhang C Y), 王淑萍 (Wang S P), 周友亚 (Zhou Y Y) . 化学进展( Progress in Chemistry), 2015,27(7):945.
[72]
Liu H L, Mu L, Chen X M, Wang J, Wang S, Sun B G . J. Agric. Food Chem., 2017,65:986.
[73]
Liu X L, Wang C, Wu Q H, Wang Z . J. Sep. Sci., 2015,38:3928.
[74]
Chang N, Gu Z Y, Yan XP . J. Am. Chem. Soc., 2010,132:13645.
[75]
Wang Z, Yang J, Li Y S, Zhuang Q X, Gu J L . Chem. Eur. J., 2017,23:15415.
[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Haidi Feng, Lu Zhao, Yunfeng Bai, Feng Feng. The Application of Nanoscale Metal-Organic Frameworks for Tumor Targeted Therapy [J]. Progress in Chemistry, 2022, 34(8): 1863-1878.
[3] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[4] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[5] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[6] Wenjing Wang, Di Zeng, Juxue Wang, Yu Zhang, Ling Zhang, Wenzhong Wang. Synthesis and Application of Bismuth-Based Metal-Organic Framework [J]. Progress in Chemistry, 2022, 34(11): 2405-2416.
[7] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[8] Zhuang Yan, Yaling Liu, Zhiyong Tang. Two Dimensional Electrically Conductive Metal-Organic Frameworks [J]. Progress in Chemistry, 2021, 33(1): 25-41.
[9] Yujian Liu, Zhimin Liu, Zhigang Xu, Gongke Li. Stir Bar Sorptive Extraction Technology [J]. Progress in Chemistry, 2020, 32(9): 1334-1343.
[10] Yun Lu, Jingpeng Li, Yan Zhang, Guorui Zhong, Bo Liu, Huiqing Wang. Wood-Derived Carbon Functional Materials [J]. Progress in Chemistry, 2020, 32(7): 906-916.
[11] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[12] Peng Ning, Yunhui Cheng, Zhou Xu, Li Ding, Maolong Chen. Application of Metal-Organic Framework Materials in Enrichment of Active Peptides [J]. Progress in Chemistry, 2020, 32(4): 497-504.
[13] Haodeng Chen, Jianxing Xu, Shaomin Ji, Wenjin Ji, Lifeng Cui, Yanping Huo. Application of MOFs Derived Metal Oxides and Composites in Anode Materials of Lithium Ion Batteries [J]. Progress in Chemistry, 2020, 32(2/3): 298-308.
[14] Zhihua Song, Shenghong Li, Gangqiang Yang, Na Zhou, Lingxin Chen. Sample Pretreatment, Analysis and Detection of Ginsenosides [J]. Progress in Chemistry, 2020, 32(2/3): 239-248.
[15] Xiaohan Wang, Caixia Liu, Chunfeng Song, Degang Ma, Zhenguo Li, Qingling Liu. Application of Metal-Organic Frameworks for Low-Temperature Selective Catalytic Reduction of NO with NH3 [J]. Progress in Chemistry, 2020, 32(12): 1917-1929.