中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (12): 1920-1929 DOI: 10.7536/PC180413 Previous Articles   Next Articles

• Review •

Design and Fabrication of Magnetically Responsive Drug Delivery Carriers

Hongmei Bi1, Xiaojun Han2*   

  1. 1. College of Science, Heilongjiang Bayi Agricultural University, Daqing 163319, China;
    2. State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21503072, 21773050), the Program of Introduction of Talents in University(No. XDB-2017-19), and China Scholarship Council(No. 20163035).
PDF ( 441 ) Cited
Export

EndNote

Ris

BibTeX

Development and application of hybrid magnetic biomaterials has been attracting great attention in biomedical applications. Magnetic nanoparticles (MNPs) have emerged as a promising theranostic tool for diagnostic imaging, drug delivery and novel therapeutics because of their functionalization, targeted delivery, controllable drug release and image-guided capabilities. Remotely triggered magnetic drug delivery systems based on MNPs or doped iron oxides can enhance the drug delivery efficiency to the cancerous regions with low toxicity or without toxicity to the surrounding healthy cells. In order to fabricate safer and more effective magnetic drug delivery systems, different materials or ligands such as biomolecules, polymers even natural extractive are combined with MNPs by this hybrid approach, which has created entirely new advanced compositions with truly unique properties for drug delivery. So far, the responsive nano-structured magnetic drug delivery carriers have been extensively explored for remotely controlled drug release although there are still some difficulties and challenges. In this review, we summarize the recent advances in the design and fabrication of hybrid magnetic drug delivery carriers as remotely controlled therapeutic systems with a focus on the materials for delivery carriers fabrication including phospholipid molecules, polymers, mesoporous micro-nanomaterials, natural extractive, etc. In addition, the advantages, limits and prospects of current hybrid targeted magnetic drug delivery carriers are also briefly summarized.
Contents
1 Introduction
2 Fabrication and application of magnetic response drug delivery carriers
2.1 Drug delivery carriers based on phospholipid and magnetic nanoparticles
2.2 Drug delivery carriers based on polymer and magnetic nanoparticles
2.3 Drug delivery carriers based on porous micro-nanomaterial and magnetic nanoparticles
2.4 Drug delivery carriers based on natural extractive and magnetic nanoparticles
3 Conclusion

CLC Number: 

[1] Dobson J, Drug. Develop. Res., 2006, 67:55.
[2] Sun C, Lee J S. H, Zhang M Q. Adv. Drug Deliv. Rev., 2008, 60:1252.
[3] Veiseh O, Gunn J W, Zhang M Q. Adv. Drug Deliv. Rev., 2010, 62:284.
[4] Zhu L, Zhou Z Y, Mao H, Yang L L. Nanomedicine, 2017, 12:73.
[5] Huang J, Li Y C, Orza A, Lu Q, Guo P, Wang L Y, Yang L, Mao H. Adv. Funct. Mater., 2016, 26:3818.
[6] Barenholz Y. Nat. Nanotechnol., 2012, 7:483.
[7] Wang H, Agarwal P, Zhao S T, Yu J H, Lu X B, He X M. Nat. Commun., 2016, 7.
[8] Gilchrist R K, Medal R, Shorey W D, Hanselman R C, Parrott J C, Taylor C B. Ann. Surg., 1957, 146:596.
[9] Gneveckow U, Jordan A, Scholz R, Bruss V, Waldofner N, Ricke J, Feussner A, Hildebrandt B, Rau B, Wust P. Med. Phys., 2004, 31:1444.
[10] Lu F, Popa A, Zhou S W, Zhu J J, Samia A C S. Chem. Commun., 2013, 49:11436.
[11] Leal M P, Torti A, Riedinger A, La Fleur R, Petti D, Cingolani R, Bertacco R, Pellegrino T. ACS Nano, 2012, 6:10535.
[12] Kong S D, Zhang W Z, Lee J H, Brammer K, Lal R, Karin M, Jin S H. Nano Lett., 2010, 10:5088.
[13] Riedinger A, Guardia P, Curcio A, Garcia M A, Cingolani R, Manna L, Pellegrino T. Nano Lett., 2013, 13:2399.
[14] Park H, Park H J, Kim J A, Lee S H, Kim J H, Yoon J, Park T H. J. Microbiol. Meth., 2011, 84:41.
[15] Nguyen T K, Duong H T T, Selvanayagam R, Boyer C, Barraud N. Sci. Rep., 2015, 5:18385.
[16] Yakacki C M, Satarkar N S, Gall K, Likos R, Hilt J Z. J. App. Poly. Sci., 2009, 112:3166.
[17] Chan A, Orme R P, Fricker R A, Roach P. Adv. Drug. Deliv. Rev., 2013, 65:497.
[18] Liu T Y, Hu S H, Liu D M, Chen S Y, Chen I W. Nano Today, 2009, 4:52.
[19] Brazel C S. Pharm. Res., 2009, 26:644.
[20] Lu Y, Aimetti A A, Langer R, Gu Z. Nat. Rev. Mater., 2017, 2.
[21] Naatz H, Lin S J, Li R B, Jiang W, Ji Z X, Chang C H, Koser J, Thoming J, Xia T, Nel A E, Madler L, Pokhrel S. ACS Nano, 2017, 11:501.
[22] Kralj S, Potrc T, Kocbek P, Marchesan S, Makovec D. Curr. Med. Chem., 2017, 24:454.
[23] Allen T M, Cullis P R. Adv. Drug. Deliv. Rev., 2013, 65:36.
[24] Allen T M, Cullis P R. Science, 2004, 303:1818.
[25] Martina M S, Fortin J P, Menager C, Clement O, Barratt G, Grabielle-Madelmont C, Gazeau F, Cabuil V, Lesieur S. J. Am. Chem. Soc., 2005, 127:10676.
[26] Sau T K, Urban A S, Dondapati S K, Fedoruk M, Horton M R, Rogach A L, Stefani F D, Radler J O, Feldmann J. Colloid. Surface. A, 2009, 342:92.
[27] Chen Y J, Bose A, Bothun G D. ACS Nano, 2010, 4:3215.
[28] Spera R, Apollonio F, Liberti M, Paffi A, Merla C, Pinto R, Petralito S. Colloid. Surface. B, 2015, 131:136.
[29] Pradhan P, Giri J, Banerjee R, Bellare J, Bahadur D. J. Magn. Magn. Mater., 2007, 311:208.
[30] Qiu D, An X Q. Colloid. Surface. B, 2013, 104:326.
[31] Nappini S, Bonini M, Bombelli F B, Pineider F, Sangregorio C, Baglioni P, Norden B. Soft Matter, 2011, 7:1025.
[32] Nappini S, Fogli S, Castroflorio B, Bonini M, Bombelli F B, Baglioni P. J. Mater. Chem. B, 2016, 4:716.
[33] Clares B, Biedma-Ortiz R A, Saez-Fernandez E, Prados J C, Melguizo C, Cabeza L, Ortiz R, Arias J L. Eur. J. Pharm. Biopharm., 2013, 85:329.
[34] Nappini S, Bombelli F B, Bonini M, Norden B, Baglioni P. Soft Matter, 2010, 6:154.
[35] Nappini S, Bonini M, Ridi F, Baglioni P. Soft Matter, 2011, 7:4801.
[36] Pradhan P, Giri J, Rieken F, Koch C, Mykhaylyk O, Doblinger M, Banerjee R, Bahadur D, Plank C. J. Control. Release, 2010, 142:108.
[37] Basoglu H, Bilgin M D, Demir M M. Photodiagn. Photodyn., 2016, 13:81.
[38] Spera R, Apollonio F, Liberti M, Paffi A, Merla C, Pinto R, Petralito S. Colloid. Surface. B, 2015, 131:136.
[39] Bi H M, Fu D G, Wang L, Han X J. ACS Nano, 2014, 8:3961.
[40] Bi H M, Ma S H, Li Q, Han X J. J. Mater. Chem. B, 2016, 4:3269.
[41] Bi H M, Han X J. Chem. Phys. Lett., 2018, 706:455.
[42] Zhang Y, Wang X J, Wang L, Yu M, Han X J. Bioelectrochemistr, 2014, 95:29.
[43] Wang J G, Wang L, Liu S Q, Han X J, Huang W M, Wang E K. Biophys. Chem., 2003, 106:31.
[44] Cheng W L, Han X J, Wang E K, Dong S J. Electroanalysis, 2004, 16:127.
[45] Huang W M, Zhang Z L, Han X J,Wang J G, Tang J L, Dong S J, Wang E K. Biophys. Chem., 2002, 99:271.
[46] Huang W M, Zhang Z L, Han X J, Tang J L, Peng Z Q, Dong S J, Wang E K. Biophys. Chem., 2001, 94:165.
[47] Su Y C, Zong W, Zhao X L, Ma S H, Han X J. RSC Adv., 2015, 5:82247.
[48] Zhang X N, Zong W, Hu Y, Luo N, Cheng W L, Han X J. J. Microencapsul., 2016, 33:663.
[49] Zong W, Hu Y, Su Y C, Luo N, Zhang X N, Li Q C, Han X J, J. Microencapsul., 2016, 33:257.
[50] Yang F, Ma S H, Zong W, Luo N, Lv M L, Hu Y, Zhou L L, Han X J. RSC Advances, 2015, 5:51271.
[51] Zhang X N, Zong W, Bi H M, Zhao K, Fuhs T, Hu Y, Cheng W L, Han X J. Eur. J. Pharmacol. Biopharm., 2018, 127:177.
[52] Nappini S, Al Kayal T, Berti D, Norden B, Baglioni P. J. Phys. Chem. Lett., 2011, 2:713.
[53] Salvatore A, Montis C, Berti D, Baglioni P. ACS Nano, 2016, 10:7749.
[54] Joniec A, Sek S, Krysinski P. Chem. Eur. J., 2016, 22:17715.
[55] Amstad E, Kohlbrecher J, Muller E, Schweizer T, Textor M, Reimhult E. Nano Lett., 2011, 11:1664.
[56] Ito A, Fujioka M, Yoshida T, Wakamatsu K, Ito S, Yamashita T, Jimbow K, Honda H. Cancer Sci., 2007, 98:424.
[57] Mornet S, Vasseur S, Grasset F, Duguet E. J. Mater. Chem., 2004, 14:2161.
[58] Lin W, Xie X Y, Yang Y F, Fu X D, Liu H, Yang Y, Deng J P. Drug. Deliv., 2016, 23:3436.
[59] Chen Y J, Chen Y, Xiao D, Bose A, Deng R T, Bothun G D. Colloid. Surface. B, 2014, 116:452.
[60] Podaru G, Ogden S, Baxter A, Shrestha T, Ren S, Thapa P, Dani R K, Wang H, Basel M T, Prakash P, Bossmann S H, Chikan V. J. Phys. Chem. B, 2014, 118:11715.
[61] Szlezak M, Nieciecka D, Joniec A, Pekala M, Gorecka E, Emo M, Stebe M J, Krysinski P, Bilewicz R. ACS App. Mater. Inter., 2017, 9:2796.
[62] Xing P Y, Zhao Y L. Adv. Mater., 2016, 28:7304.
[63] Shenhar R, Norsten T B, Rotello V M. Adv. Mater., 2005, 17:657.
[64] Hammad M, Nica V, Hempelmann R. J. Nanopart. Res., 2016, 18(8):234.
[65] Li F Y, Lu J X, Kong X Q, Hyeon T, Ling D S. Adv. Mater., 2017, 29(14).
[66] Malekzadeh A M, Ramazani A, Rezaei S J T, Niknejad H. J. Colloid. Interface. Sci., 2017, 490:64.
[67] Nakamura M, Katagiri K, Koumoto K. J. Colloid. Interface Sci., 2010, 341:64.
[68] Lee S H, Song Y, Hosein I D, Liddell C M. J. Mater. Chem., 2009, 19:350.
[69] Lu Z H, Prouty M D, Guo Z H, Golub V O, Kumar C, Lvov Y M. Langmuir, 2005, 21:2042.
[70] Li L L, Chen D, Ding M H, Tang F Q, Meng X W, Ren J, Zhang L. Acta Phys-Chim. Sin., 2007, 23:1969.
[71] Hu S H, Tsai C H, Liao C F, Liu D M, Chen S Y. Langmuir, 2008, 24:11811.
[72] Katagiri K, Nakamura M, Koumoto K. ACS App. Mater. Inter., 2010, 2:768.
[73] Kono K, Ozawa T, Yoshida T, Ozaki F, Ishizaka Y, Maruyama K, Kojima C, Harada A, Aoshima S. Biomaterials, 2010, 31:7096.
[74] Kono K, Murakami T, Yoshida T, Haba Y, Kanaoka S, Takagishi T, Aoshima S, Bioconjugate. Chem., 2005, 16:1367.
[75] Katagiri K, Imai Y, Koumoto K, Kaiden T, Kono K, Aoshima S, Small, 2011, 7:1683.
[76] Guo M A, Que C L, Wang C H, Liu X Z, Yan H S, Liu K L, Biomaterials, 2011, 32:185.
[77] Kim D H, Vitol E A, Liu J, Balasubramanian S, Gosztola D J, Cohen E E, Novosad V, Rozhkova E A, Langmuir, 2013, 29:7425.
[78] Liu T Y, Hu S H, Liu K H, Shaiu R S, Liu D M, Chen S Y, Langmuir, 2008, 24:13306.
[79] Goswami M M. Sci. Rep., 2016, 6:35721.
[80] Saikia C, Das M K, Ramteke A, Maji T K. Int. J. Bio. Macromol., 2016, 93:1121.
[81] Sundar S, Mariappan R, Piraman S, Powder. Technol., 2014, 266:321.
[82] Pham X N, Nguyen T P, Pham T N, Tran T T N, Tran T V T. Adv. Nat. Sci-Nanosci., 2016, 7.
[83] Tartaj P, Morales M D, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna C J. J. Phys. D-Appl. Phys., 2003, 36:R182.
[84] Liu X S, Li H, Jin Q, Ji J. Small, 2014, 10:4230.
[85] Benyettou F, Flores J A O, Ravaux F, Rezgui R, Jouiad M, Nehme S I, Parsapur R K, Olsen J C, Selvam P, Trabolsi A. Chem-Eur. J., 2016, 22:17018.
[86] Liu Q, Zhang J X, Sun W, Xie Q R B, Xia W L, Gu H C. Int. J. Nanomed., 2012, 7:999.
[87] Guo X Y, Mao F F, Wang W J, Yang Y, Bai Z M. ACS Appl. Mater. Interface., 2015, 7:14983.
[88] Vivero-Escoto J L, Slowing Ⅱ, Trewyn B G, Lin V S Y. Small, 2010, 6:1952.
[89] Jiang W, Wu J, Tian R B, Jiang W. J. Porous. Mat., 2017, 24:257.
[90] Yao Y J, Miao S D, Yu S M, Ma L P, Sun H Q, Wang S B. J. Colloid. Interf. Sci., 2012, 379:20.
[91] Luong T T, Knoppe S, Bloemen M, Brullot W, Strobbe R, Locquet J P, Verbiest T. J. Magn. Magn. Mater., 2016, 416:194.
[92] Chen P J, Hu S H, Hsiao C S, Chen Y Y, Liu D M, Chen S Y. J. Mater. Chem., 2011, 21:2535.
[93] Peng H X, Hu C Y, Hu J L, Tian X Y, Wu T Y. Micropor. Mesopor. Mat., 2016, 226:140.
[94] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132:10623.
[95] Fusaro L, Locci E, Lai A, Luhmer M. J. Phys. Chem. B, 2008, 112:15014.
[96] Helminger M, Wu B H, Kollmann T, Benke D, Schwahn D, Pipich V, Faivre D, Zahn D, Colfen H. Adv. Funct. Mater., 2014, 24:3187.
[97] Sharma R K, Gulati S, Mehta S. J. Chem. Educ., 2012, 89:1316.
[98] Shahwan T, Abu Sirriah S, Nairat M, Boyaci E, Eroglu A E, Scott T B, Hallam K R. Chem. Eng. J., 2011, 172:258.
[99] Wang T, Lin J J, Chen Z L, Megharaj M, Naidu R. J. Clean. Prod., 2014, 83:413.
[100] Sun Q, Cai X, Li J W, Zheng M, Chen Z L, Yu C P, Colloid. Surface. A., 2014, 444:226.
[101] Jayaramudu T, Raghavendra G M, Varaprasad K, Raju K M, Sadiku E R, Kim J. J. Appl. Polym. Sci., 2016, 133.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[3] Dong Baokun, Zhang Ting, He Fan. Research Progress and Application of Flexible Thermoelectric Materials [J]. Progress in Chemistry, 2023, 35(3): 433-444.
[4] Liu Jun, Ye Daiyong. Research Progress of Antiviral Coatings [J]. Progress in Chemistry, 2023, 35(3): 496-508.
[5] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[6] Qitong Wang, Jiale Ding, Danying Zhao, Yunhe Zhang, Zhenhua Jiang. Dielectric Polymer Materials for Energy Storage Film Capacitors [J]. Progress in Chemistry, 2023, 35(1): 168-176.
[7] Shuai Huang, Yu Tao, Yinliang Huang. Photodeformable Composite Materials Based on Liquid Crystalline Polymers [J]. Progress in Chemistry, 2022, 34(9): 2012-2023.
[8] Lijun Bao, Junwu Wei, Yangyang Qian, Yujia Wang, Wenjie Song, Yunmei Bi. Synthesis, Properties and Applications of Enzyme-Responsive Linear-Dendritic Block Copolymers [J]. Progress in Chemistry, 2022, 34(8): 1723-1733.
[9] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[10] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[11] Fengjing Jiang, Hanchen Song. Graphite-based Composite Bipolar Plates for Flow Batteries [J]. Progress in Chemistry, 2022, 34(6): 1290-1297.
[12] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[13] Zhenxing Li, Zhiwang Luo, Ping Wang, Zhenqiang Yu, Erqiang Chen, Helou Xie. Luminescent Liquid Crystalline Polymers: Molecular Fabrication, Structure-Properties and Their Applications [J]. Progress in Chemistry, 2022, 34(4): 787-800.
[14] Chenghao Li, Yamin Liu, Bin Lu, Ulla Sana, Xianyan Ren, Yaping Sun. Toward High-Performance and Functionalized Carbon Dots: Strategies, Features, and Prospects [J]. Progress in Chemistry, 2022, 34(3): 499-518.
[15] Yuling Liu, Tengda Hu, Yilian Li, Yang Lin, Borsali Redouane, Yingjie Liao. Fast Self-Assembly Methods of Block Copolymer Thin Films [J]. Progress in Chemistry, 2022, 34(3): 609-615.