中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (10): 1534-1547 DOI: 10.7536/PC180537 Previous Articles   Next Articles

• Review •

Design and Application of T1-T2 Dual-Modal MRI Contrast Agents

Guang Deng, Hong Yang, Zhiguo Zhou*, Shiping Yang*   

  1. College of Life and Environmental Sciences, Key laboratory of Resource Chemistry of MOE, Shanghai Normal University, Shanghai 200234, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21571130, 21671135).
PDF ( 471 ) Cited
Export

EndNote

Ris

BibTeX

Magnetic resonance imaging(MRI) has been used in the clinic widely as an early noninvasive diagnosis technique. According to the theory of MRI, three imaging modes exist, namely, T1-weighted imaging, T2-weighted imaging and diffusion weighted imaging. Accordingly, there are two types of exogenous MRI contrast agents, namely T1 contrast agent and T2 contrast agent, for improvement in contrast in MR images. Either T1 or T2 contrast agents has its own advantages and disadvantages, respectively. Recently, a kind of new contrast agents, T1-T2 dual-modal contrast agent, has been designed, which can be used on one machine with an accurate match of spatial and temporal imaging parameters. This article reviews the progress of design and chemical synthesis methods of T1-T2 dual-mode contrast agents, and also introduces their biomedical applications.
Contents
1 Introduction
2 The research about dual T1-T2 MRI contrast agents
2.1 Nanoparticles with a single metal
2.2 Nanoparticles with two types of MRI contrast agents
2.3 A type of metal doping
3 Conclusion

CLC Number: 

[1] Spees W M, Yablonskiy D A, Oswood M C, Ackerman J J H. Magn. Reson. Med., 2010, 45:533.
[2] Wang L V, Hu S. Science, 2012, 335:1458.
[3] Fernández-Suárez M, Ting A Y. Nat. Rev. Mol. Cell Bio., 2008, 9:929.
[4] Brenner D J, Hall E J. N. Engl. J. Med., 2007, 357:2277.
[5] Soret M, Bacharach S L, Buvat I. J. Nucl. Med., 2007, 48:932.
[6] Logothetis N K. Nature, 2008, 453:869.
[7] Garcia J, Liu S Z, Louie A Y. Philos. Trans. R. Soc. A, 2017, 375:20170180.
[8] Walderveen M A A, Barkhof F, Hommes O R, Polman C H, Tobi H, Frequin S T F M, Valk J. Neurology, 1995, 45:1684.
[9] Adams G R, Duvoisin M R, Dudley G A. J. Appl. Physiol., 1992, 73:1578.
[10] González R G, Schaefer P W, Buonanno F S, Schwamm L H, Budzik R F, Rordorf G, Wang B, Sorensen A G, Koroshetz W J. Radiology, 1999, 210:155.
[11] Peet A C, Arvanitis T N, Leach M O, Waldman A D. Nat. Rev. Clin. Oncol., 2012, 9:700.
[12] Knickmeyer R C, Gouttard S, Kang C, Evans D, Wilber K, Smith J K, Hamer R M, Lin W, Gerig G, Gilmore J H. J Neurosci., 2008, 28:12176.
[13] 朱晓玲(Zhu X L), 范晓黎(Fan X L), 吴晓莉(Wu X L), 方正(Fang Z). 安徽医药(Anhui Medical and Pharmaceutical Journal), 2017, 21(10):1833.
[14] 张婷玉(Zhang T Y), 宋振强(Song Z Q), 胡亚萍(Hu Y P), 王斌杰(Wang B J). 实用医学影像杂志(Journal of Practical Medical Imaging), 2016, 17(3):251.
[15] 肖利华(Xiao L H), 郑晓林(Zheng X L), 范宪淼(Fan X M), 高云(Gao Y), 袁焕初(Yuan H C). 实用放射学杂志(Journal of Practical Radiology), 2011, 27(10):1520.
[16] Stanisz G J, Odrobina E E, Pun J, Escaravage M, Graham S J, Bronskill M J, Henkelman R M. Mag. Reson. Med., 2010, 54:507.
[17] Debroye E, Parac-Vogt T N. Chem. Soc. Rev., 2014, 43:8178.
[18] Werner E J, Datta A, Jocher C J, Raymond K N. Angew. Chem. Int. Ed., 2008, 47:8568.
[19] Martin P, Bender B, Focke N K. Quant. Imaging. Med. Surgery., 2015, 5:188.
[20] Solomon I. Phys. Rev., 1955, 99:559.
[21] Ni K Y, Zhao Z H, Zhang Z J, Zhou Z J, Yang L, Wang L R, Ai H, Gao J H. Nanoscale, 2016, 8:3768.
[22] Hu F Q, Jia Q J, Li Y L, Gao M Y. Nanotechnology, 2011, 22:245604.
[23] Pernia Leal M, Rivera-Fernandez S, Franco J M, Pozo D, de la Fuente J M, Garcia-Martin M L. Nanoscale, 2015, 7:2050.
[24] Zhou Z, Lu Z R. Wiley Interdiscip Rev Nanomed Nanobiotechnol., 2013, 5:1.
[25] Benner T, Reimer P, Erb G, Schuierer G, Heiland S, Fischer C, Geens V, Sartor K, Forsting M. J. Magn. Reson. Imaging, 2000, 12:371.
[26] White G W, Gibby W A, Tweedle M F. Invest. Radiol., 2006, 41:272.
[27] Pintaske J, Martirosian P, Graf H, Erb G, Lodemann K P, Claussen C D, Schick F. Invest. Radiol., 2006, 41:213.
[28] Liu Q M, Song L W, Chen S, Gao J Y, Zhao P Y, Du J Z. Biomaterials, 2017, 114:23.
[29] Chao Y, Makale M, Karmali P P, Sharikov Y, Tsigelny I, Merkulov S, Kesari S, Wrasidlo W, Ruoslahti E, Simberg D. Bioconjugate Chem., 2012, 23:1003.
[30] Ziemian S, Lowa N, Kosch O, Bajj D, Wiekhorst F, Schutz G. Nanomaterials, 2018, 8:108.
[31] Yan C Y, Chen C Q, Hou L, Zhang H J, Che Y Y, Qi Y D, Zhang X J, Cheng J L, Zhang Z Z. J. Drug Targeting, 2017, 25:163.
[32] Liu K, Dong L, Xu Y J, Yan X, Li F, Lu Y, Tao W, Peng H Y, Wu Y D, Su Y, Ling D S, He T, Qian H S, Yu S H. Biomaterials, 2018, 158:74.
[33] Pietsch H, Raschke M, Ellinger-Ziegelbauer H, Jost G, Walter J, Frenzel T, Lenhard D, Hütter J, Sieber M A. Invest. Radiol., 2011, 46:48.
[34] Kanda T, Matsuda M, Oba H, Toyoda K, Furui S. Radiology., 2015, 277:924.
[35] 申宝忠(Shen B Z). 分子影像学(Molecular Imaging). 北京:人民卫生出版社(People's Medical Publishing House), 2017.9.
[36] Shin T H, Choi Y, Kim S, Cheon J. Chem. Soc. Rev., 2015, 44:4501.
[37] Schrag M, McAuley G, Pomakian J, Jiffry A, Tung S, Mueller C, Vinters H V, Haacke E M, Holshouser B, Kido D, Kirsch W M. Acta Neuropathol., 2010, 119:291.
[38] Shin T H, Choi J S, Yun S, Kim I S, Song H T, Kim Y, Park K I, Cheon J. ACS Nano, 2014, 8:3393.
[39] 熊国欣(Xiong G X), 李立本(Li L B), 核磁共振成像原理(Principle of MRI). 北京:科学出版社(Science Press), 2007.8.
[40] De M, Chou S S, Joshi H M, Dravid V P. Adv. Drug Delivery Rev., 2011, 63:1282.
[41] Lahooti A, Sarkar S, Saligheh Rad H, Gholami A, Nosrati S, Muller R N, Laurent S, Grüttner C, Geramifar P, Yousefnia H, Mazidi M, Shanehsazzadeh S. J. Radioanal. Nucl. Chem., 2017, 311:769.
[42] Gao D Y, Zhang P F, Liu C B, Chen C, Gao G H, Wu Y Y, Sheng Z H, Song L, Cai L T. Nanoscale, 2015, 7:17631.
[43] Yang W T, Guo W S, Le W J, Lv G X, Zhang F H, Shi L, Wang X L, Wang J, Wang S, Chang J, Zhang B B. ACS Nano, 2016, 10:10245.
[44] Ma M, Yan F, Yao M H, Wei Z J, Zhou D L, Yao H L, Zheng H R, Chen H R, Shi J L. ACS Appl. Mater. Interfaces, 2016, 8:29986.
[45] Zhou Z J, Huang D T, Bao J F, Chen Q L, Liu G, Chen Z, Chen X Y, Gao J H. Adv. Mater., 2012, 24:6223.
[46] Kim B H, Lee N, Kim H, An K, Park Y I, Choi Y, Shin K, Lee Y, Kwon S G, Na H B, Park J G, Ahn T Y, Kim Y W, Moon W K, Choi S H, Hyeon T. J. Am. Chem. Soc., 2011, 133:12624.
[47] Yang H, Zhuang Y M, Sun Y, Dai A T, Shi X Y, Wu D M, Li F Y, Hu H, Yang S P. Biomaterials, 2011, 32:4584.
[48] Zhou Z J, Wang L R, Chi X Q, Bao J F, Yang L J, Zhao W X, Chen Z, Wang X M, Chen X Y, Gao J H. ACS Nano, 2013, 7:3287.
[49] Wang Y X J, Hussain S M, Krestin G P. Eur. J. Radiol.,2001, 11:2319.
[50] Alipour A, Soran-Erdem Z, Utkur M, Sharma V K, Algin O, Saritas E U, Demir H V. Magn. Reson. Imaging, 2017, 49:16.
[51] Li Z, Yi P W, Sun Q, Lei H, Li Zhao H, Zhu Z H, Smith S C, Lan M B, Lu G Q. Adv. Funct. Mater., 2012, 22:2387.
[52] Wang G N, Zhang X J, Skallberg A, Liu Y, Hu Z J, Mei X F, Uvdal K. Nanoscale, 2014, 6:2953.
[53] Chen Y, Ai K L, Liu J H, Ren X Y, Jiang C H, Lu L H. Biomaterials, 2016, 77:198.
[54] Shin J, Anisur R M, Ko M K, Im G H, Lee J H, Lee I S. Angew. Chem. Int. Ed., 2009, 48:321.
[55] Caro C, García-Martín M L, Pernia Leal M. Biomacromolecules, 2017, 18:1617.
[56] Jain R K. J. Clin. Oncol., 2013, 31:2205.
[57] 段二月(Duan E Y), 马建功(Ma J G), 程鹏(Cheng P). 大学化学(University Chemistry), 2016, 31(7):1.
[58] Courant T, Roullin Valérie G, Cadiou C, Callewaert M, Andry Marie C, Portefaix C, Hoeffel C, Goltstein M C, Port M, Laurent S, Elst Luce V, Muller R, Molinari M, Chuburu F. Angew. Chem. Int. Ed., 2012, 51:9119.
[59] Xu L Y, Hong S H, Sun Y, Sun Z Y, Shou K Q, Cheng K, Chen H, Huang D J, Xu H B, Cheng Z. Nanomedicine, 2018, 14:1743.
[60] Wang L, Zhang H W, Zhou Z G, Kong B, An L, Wei J, Yang H, Zhao J M, Yang S P. J. Mater. Chem. B, 2015, 3:1433.
[61] Peng Y K, Lui C N P, Chen Y W, Chou S W, Raine E, Chou P T, Yung K K L, Tsang S C E. Chem. Mate., 2017, 29:4411.
[62] Meenambal R, Kannan S. ACS Biomate. Sci. Eng., 2018, 4:47.
[63] Hao D P, Ai T, Goerner F, Hu X M, Runge V M, Tweedle M. J. Magn. Reson. Imaging, 2012, 36:1060.
[64] Nordhøy W, Anthonsen Henrik W, Bruvold M, Brurok H, Skarra S, Krane J, Jynge P. Magn. Reson. Med., 2004, 52:506.
[65] Gao L P, Yu J, Liu Y, Zhou J E, Sun L, Wang J, Zhu J Z, Peng H, Lu W Y, Yu L, Yan Z Q, Wang Y T. Theranostics, 2018, 8:92.
[66] Bae K H, Kim Y B, Lee Y, Hwang J, Park H, Park T G. Bioconjugate Chem., 2010, 21:505.
[67] Zhao W, Huang H L, Sun Y, Zhang X N, Li Y P, Wang J Y. RSC Advances, 2015, 5:97675.
[68] 杨昕仪(Yang X Y). 上海师范大学硕士论文(Master Dissertation of Shanghai Normal University), 2014.
[69] Yang M C, Gao L P, Liu K, Luo C H, Wang Y T, Yu L, Peng H, Zhang W. Talanta, 2015, 131:661.
[70] Choi J S, Lee J H, Shin T H, Song H T, Kim E Y, Cheon J. J. Am. Chem. Soc., 2010, 132:11015.
[71] Li F F, Zhi D B, Luo Y F, Zhang J Q, Nan X, Zhang Y J, Zhou W, Qiu B S, Wen L P, Liang G L. Nanoscale, 2016, 8:12826.
[72] Cheng K, Yang M, Zhang R P, Qin C X, Su X H, Cheng Z. ACS Nano, 2014, 8:9884.
[73] Im G H, Kim S M, Lee D G, Lee W J, Lee J H, Lee I S. Biomaterials, 2013, 34:2069.
[74] Townsend D M, Tew K D, Tapiero H. Biomed. Pharmacother., 2003, 57:145.
[75] Townsend D M, Tew K D. Oncogene, 2002, 22:7369.
[76] Meister A. Pharmacol. Ther., 1991, 51:155.
[77] Kim M H, Son H Y, Kim G Y, Park K, Huh Y M, Haam S. Biomaterials, 2016, 101:121.
[78] Jin L H, Liu J H, Tang Y, Cao L Q, Zhang T Q, Yuan Q H, Wang Y H, Zhang H J. ACS Appl. Mater. Interfaces, 2017, 9:41648.
[79] Wang X Y, Zhou Z J, Wang Z Y, Xue Y X, Zeng Y, Gao J H, Zhu L, Zhang X Z, Liu G, Chen X Y. Nanoscale, 2013, 5:8098.
[80] Zhou Z J, Liu H Y, Chi X Q, Chen J H, Wang L R, Sun C J, Chen Z, Gao J H. ACS Appl. Mater. Interfaces, 2015, 7:28286.
[81] Xiao N, Gu W, Wang H, Deng Y L, Shi X, Ye L. J. Colloid and Interface Sci., 2014, 417:159.
[82] Yang H, Qin C Y, Yu C, Lu Y, Zhang H W, Xue F F, Wu D M, Zhou Z G, Yang S P. Adv. Funct. Mater., 2014, 24:1738.
[83] Huang G M, Li H, Chen J H, Zhao Z H, Yang L J, Chi X Q, Chen Z, Wang X M, Gao J H. Nanoscale, 2014, 6:10404.
[84] Zhang M X, Cao Y H, Wang L N, Ma Y F, Tu X L, Zhang Z J. ACS Appl. Mater. Interfaces, 2015, 7:4650.
[1] Zhendong Liu, Jiajie Pan, Quanbing Liu. Application of Machine Learning in the Design of Cathode Materials and Electrolytes for High-Performance Lithium Batteries [J]. Progress in Chemistry, 2023, 35(4): 577-592.
[2] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[3] Xuedan Qian, Weijiang Yu, Junzhe Fu, Youxiang Wang, Jian Ji. Fabrication and Biomedical Application of Hyaluronic Acid Based Micro- and Nanogels [J]. Progress in Chemistry, 2023, 35(4): 519-525.
[4] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[5] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[6] Anchen Fu, Yanjia Mao, Hongbo Wang, Zhijuan Cao. Development and Application of Dioxetane-based Chemiluminescent Probes [J]. Progress in Chemistry, 2023, 35(2): 189-205.
[7] Lan Yu, Peiran Xue, Huanhuan Li, Ye Tao, Runfeng Chen, Wei Huang. Circularly Polarized Thermally Activated Delayed Fluorescence Materials and Their Applications in Organic Light-Emitting Devices [J]. Progress in Chemistry, 2022, 34(9): 1996-2011.
[8] Xu Zhang, Lei Zhang, Shanen Huang, Zhifang Chai, Weiqun Shi. Preparation of Salt-Inclusion Materials in High-Temperature Molten Salt System and Their Potential Application [J]. Progress in Chemistry, 2022, 34(9): 1947-1956.
[9] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[10] Jiahui Ma, Wei Yuan, Simin Liu, Zhiyong Zhao. Self-Assembly of Small Molecule Modified DNA and Their Application in Biomedicine [J]. Progress in Chemistry, 2022, 34(4): 837-845.
[11] Xueer Cai, Meiling Jian, Shaohong Zhou, Zefeng Wang, Kemin Wang, Jianbo Liu. Chemical Construction of Artificial Cells and Their Biomedical Applications [J]. Progress in Chemistry, 2022, 34(11): 2462-2475.
[12] Zitong Zhao, Zhenzhen Zhang, Zhihong Liang. The Activity Origin, Catalytic Mechanism and Future Application of Peptide-Based Artificial Hydrolase [J]. Progress in Chemistry, 2022, 34(11): 2386-2404.
[13] Xuechuan Wang, Yansong Wang, Qingxin Han, Xiaolong Sun. Small-Molecular Organic Fluorescent Probes for Formaldehyde Recognition and Applications [J]. Progress in Chemistry, 2021, 33(9): 1496-1510.
[14] Xiaolu Liu, Yuxiao Geng, Ran Hao, Yuping Liu, Zhongyong Yuan, Wei Li. Electrocatalytic Nitrogen Reduction Reaction under Ambient Condition: Current Status, Challenges, and Perspectives [J]. Progress in Chemistry, 2021, 33(7): 1074-1091.
[15] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.