中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC180625 Previous Articles   Next Articles

Special Issue: 酶化学

• Review •

Selenoprotein R: A Unique Methionine Sulfoxide Reductase

Tengrui Shi, Yujie Yang, Qiong Liu, Nan Li*   

  1. College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 31700919) and the Shenzhen Science and Technology Innovation Committee(No. JCYJ20160520163119426).
PDF ( 459 ) Cited
Export

EndNote

Ris

BibTeX

Selenoproteins represent a category of proteins that possess selenocysteine as the active center, by taking advantage of robust reducing ability of selenium, selenoproteins exert an important antioxidant function in various organisms. To date, there are 25 genes that encode selenoproteins found in human genome. Among them, selenoprotein R is the only methionine sulfoxide reductase that contains selenocysteine. It is located in the cytoplasm and nucleus, given the protein structure and strong nucleophilicity of selenium, selenoprotein R is competent to specifically reduce the oxidized sulfur in methionine-R-sulfoxide. Selenoprotein R could directly interact with many proteins, such as actin, transient receptor potential channel proteins, and β-amyloid protein. It may play crucial roles in the central nervous system and is closely related with the development of neurodegenerative diseases.
Contents
1 Introduction
2 The recognition of selenoprotein R and other Msrs
3 Phenotype induced by Msrs knockout
4 Involvement of selenoprotein R in neural degenerative disease
5 Conclusion and outlook

CLC Number: 

[1] Labunskyy V M, Hatfield D L, Gladyshev V N. Physiological Reviews, 2014, 94.
[2] 陈平(Chen P),刘晴(Liu Q),马孝杰(Ma X J),王诗捷(Wang S J), 刘琼(Liu Q), 倪嘉缵(Ni J Z). 生物化学与生物物理进展(Progress in Biochemistry and Biophysics), 2014, 41:755.
[3] Tian J, Liu J, Li J, Zheng J, Chen L, Wang Y, Liu Q, Ni J. Nutrition & Metabolism, 2018, 15.
[4] Du X, Wang Z, Zheng Y, Li H, Ni J, Liu Q. Inorganic Chemistry, 2014, 53.
[5] Qiao X, Tian J, Chen P, Wang C, Ni J, Liu Q. International Journal of Molecular Sciences, 2013, 14.
[6] Du X, Li H, Wang Z, Qiu S, Liu Q, Ni J. Metallomics:Integrated Biometal Science, 2013, 5.
[7] Chen P, Wang C, Ma X, Zhang Y, Liu Q, Qiu S, Liu Q, Tian J, Ni J. PLoS One, 2013, 8.
[8] Gladyshev V N, Arner E S, Berry M J, Brigelius-Flohe R, Bruford E A, Burk R F, Carlson B A, Castellano S, Chavatte L, Conrad M, Copeland P R, Diamond A M, Driscoll D M, Ferreiro A, Flohe L, Green F R, Guigo R, Handy D E, Hatfield D L, Hesketh J, Hoffmann P R, Holmgren A, Hondal R J, Howard M T, Huang K, Kim H Y, Kim I Y, Kohrle J, Krol A, Kryukov G V, Lee B J, Lee B C, Lei X G, Liu Q, Lescure A, Lobanov A V, Loscalzo J, Maiorino M, Mariotti M, Sandeep P K, Rayman M P, Rozovsky S, Salinas G, Schmidt E E, Schomburg L, Schweizer U, Simonovic M, Sunde R A, Tsuji P A, Tweedie S, Ursini F, Whanger P D, Zhang Y. The Journal of Biological Chemistry, 2016, 291.
[9] Bennett M A. The Biochemical Journal, 1939, 33.
[10] Gonzalez P P, Baldesten A, Reichard P. The Journal of Biological Chemistry, 1970, 245.
[11] Ejiri S I, Weissbach H, Brot N. Analytical Biochemistry, 1980, 102.
[12] Brot N, Werth J, Koster D, Weissbach H. Analytical Biochemistry, 1982, 122.
[13] Moskovitz J, Weissbach H, Brot N. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93.
[14] Rahman M A, Moskovitz J, Strassman J, Weissbach H, Brot N. Journal of Bacteriology, 1994, 176.
[15] Kuschel L, Hansel A, Schonherr R, Weissbach H, Brot N, Hoshi T, Heinemann S H. FEBS Letters, 1999, 456.
[16] Grimaud R, Ezraty B, Mitchell J K, Lafitte D, Briand C, Derrick P J, Barras F. The Journal of Biological Chemistry, 2001, 276.
[17] Kryukov G V, Kryukov V M, Gladyshev V N. The Journal of Biological Chemistry, 1999, 274:33888.
[18] Lescure A, Gautheret D, Carbon P, Krol A. The Journal of Biological Chemistry, 1999, 274:38147.
[19] Kryukov G V, Kumar R A, Koc A, Sun Z, Gladyshev V N. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99.
[20] Kim H Y, Gladyshev V N. Biochemical and Biophysical Research Communications, 2004, 320.
[21] Lin Z, Johnson L C, Weissbach H, Brot N, Lively M O, Lowther W T. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104.
[22] Fomenko D E, Novoselov S V, Natarajan S K, Lee B C, Koc A, Carlson B A, Lee T H, Kim H Y, Hatfield D L, Gladyshev V N. The Journal of Biological Chemistry, 2009, 284.
[23] Kaya A, Lee B C, Gladyshev V N. Antioxidants & Redox Signaling, 2015, 23:814.
[24] Lowther W T, Weissbach H, Etienne F, Brot N, Matthews B W. Nature Structural Biology, 2002, 9.
[25] Xiong Y, Chen B, Smallwood H S, Urbauer R J, Markille L M, Galeva N, Williams T D, Squier T C. Biochemistry, 2006, 45.
[26] Oien D B, Osterhaus G L, Latif S A, Pinkston J W, Fulks J, Johnson M, Fowler S C, Moskovitz J. Free Radical Biology & Medicine, 2008, 45.
[27] Brennan L A, Lee W, Cowell T, Giblin F, Kantorow M. Molecular Vision, 2009, 15.
[28] Salmon A B, Perez V I, Bokov A, Jernigan A, Kim G, Zhao H, Levine R L, Richardson A. FASEB Journal:Official Publication of the Federation of American Societies for Experimental Biology, 2009, 23.
[29] Kwon T J, Cho H J, Kim U K, Lee E, Oh S K, Bok J, Bae Y C, Yi J K, Lee J W, Ryoo Z Y, Lee S H, Lee K Y, Kim H Y. Human Molecular Genetics, 2014, 23.
[30] Moskovitz J, Poston J M, Berlett B S, Nosworthy N J, Szczepanowski R, Stadtman E R. The Journal of Biological Chemistry, 2000, 275.
[31] Kim H Y, Gladyshev V N. Biochemistry, 2005, 44.
[32] Haenold R, Wassef R, Hansel A, Heinemann S H, Hoshi T. Free Radical Research, 2007, 41.
[33] Cabreiro F, Picot C R, Perichon M, Castel J, Friguet B, Petropoulos I. The Journal of Biological Chemistry, 2008, 283.
[34] Kim K Y, Kwak G H, Singh M P, Gladyshev V N, Kim H Y. Archives of Biochemistry and Biophysics, 2017, 634.
[35] Lee B C, Lee S G, Choo M K, Kim J H, Lee H M, Kim S, Fomenko D E, Kim H Y, Park J M, Gladyshev V N. Scientific Reports, 2017, 7.
[36] Jia Y, Li Y, Du S, Huang K. Experimental Eye Research, 2012, 100.
[37] Dai J, Liu H, Zhou J, Huang K. International Journal of Molecular Sciences, 2016, 17.
[38] Jia Y, Zhou J, Liu H, Huang K. Biochemical and Biophysical Research Communications, 2014, 443.
[39] Novoselov S V, Kim H Y, Hua D, Lee B C, Astle C M, Harrison D E, Friguet B, Moustafa M E, Carlson B A, Hatfield D L, Gladyshev V N. Antioxidants & Redox Signaling, 2010, 12.
[40] Ruan H, Tang X D, Chen M L, Joiner M L, Sun G, Brot N, Weissbach H, Heinemann S H, Iverson L, Wu C F, Hoshi T. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99.
[41] Moskovitz J, Bar-Noy S, Williams W M, Requena J, Berlett B S, Stadtman E R. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98.
[42] Koc A, Gasch A P, Rutherford J C, Kim H Y, Gladyshev V N. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101.
[43] Moskovitz J, Du F, Bowman C F, Yan S S. American Journal of Physiology Endocrinology and Metabolism, 2016, 310.
[44] Adams S L, Benayoun L, Tilton K, Chavez O R, Himali J J, Blusztajn J K, Seshadri S, Delalle I. Journal of Alzheimer's Disease:JAD, 2017, 60.
[45] Mohamed T, Shakeri A, Rao P P. European Journal of Medicinal Chemistry, 2016, 113.
[46] Pchitskaya E, Popugaeva E, Bezprozvanny I. Cell Calcium, 2018, 70:87.
[47] Karch C M, Goate A M. Biological Psychiatry, 2015, 77.
[48] Wang C, Chen P, He X, Peng Z, Chen S, Zhang R, Cheng J, Liu Q. Biochemical and Biophysical Research Communications, 2017, 489.
[49] Cummings J L, Morstorf T, Zhong K. Alzheimer's Research & Therapy, 2014, 6.
[50] Cummings J, Lee G, Mortsdorf T, Ritter A, Zhong K. Alzheimer's & Dementia, 2017, 3.
[51] Bezprozvanny I, Mattson M P. Trends in Neurosciences, 2008, 31.
[52] Popugaeva E, Pchitskaya E, Bezprozvanny I. Biochemical and Biophysical Research Communications, 2017, 483.
[53] Kumar A, Bodhinathan K, Foster T C. Frontiers in Aging Neuroscience, 2009, 1.
[54] Bezprozvanny I. Trends in Molecular Medicine, 2009, 15.
[55] Liao Y, Erxleben C, Abramowitz J, Flockerzi V, Zhu M X, Armstrong D L, Birnbaumer L. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105.
[56] Ferreira I L, Bajouco L M, Mota S I, Auberson Y P, Oliveira C R, Rego A C. Cell Calcium, 2012, 51.
[57] Lipton S A. Nature Reviews Neuroscience, 2007, 8.
[58] Foster T C, Kyritsopoulos C, Kumar A. Behavioural Brain Research, 2017, 322.
[59] Song G, Zhang Z, Wen L, Chen C, Shi Q, Zhang Y, Ni J, Liu Q. Journal of Alzheimer's Disease:JAD, 2014, 41.
[60] Zhang Z H, Wu Q Y, Zheng R, Chen C, Chen Y, Liu Q, Hoffmann P R, Ni J Z, Song G L. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2017, 37.
[61] Zhang Z H, Chen C, Wu Q Y, Zheng R, Liu Q, Ni J Z, Hoffmann P R, Song G L. Metallomics:Integrated Biometal Science, 2016, 8.
[62] Cao G, Lee K P, van der Wijst J, de Graaf M, van der Kemp A, Bindels R J, Hoenderop J G. The Journal of Biological Chemistry, 2010, 285.
[63] Hung R J, Yazdani U, Yoon J, Wu H, Yang T, Gupta N, Huang Z, van Berkel W J, Terman J R. Nature, 2010, 463.
[64] Lee B C, Peterfi Z, Hoffmann F W, Moore R E, Kaya A, Avanesov A, Tarrago L, Zhou Y, Weerapana E, Fomenko D E, Hoffmann P R, Gladyshev V N. Mol. Cell, 2013, 51.
[65] West M J, Coleman P D, Flood D G, Troncoso J C. Lancet, 1994, 344.
[66] Erickson J R, Joiner M L, Guan X, Kutschke W, Yang J, Oddis C V, Bartlett R K, Lowe J S, O'Donnell S E, Aykin-Burns N, Zimmerman M C, Zimmerman K, Ham A J, Weiss R M, Spitz D R, Shea M A, Colbran R J, Mohler P J, Anderson M E. Cell, 2008, 133.
[67] Schomburg L, Schweizer U, Holtmann B, Flohe L, Sendtner M, Kohrle J. The Biochemical Journal, 2003, 370.
[68] Peters M M, Hill K E, Burk R F, Weeber E J. Molecular Neurodegeneration, 2006, 1.
[69] Burk R F, Hill K E, Olson G E, Weeber E J, Motley A K, Winfrey V P, Austin L M. The Journal of Neuroscience:the Official Journal of the Society for Neuroscience, 2007, 27.
[1] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[2] Li Yi, Li Lin, Huang Kaixun. Methionine Sulfoxide Reductase and Their Roles in Cataracts Formation and Development [J]. Progress in Chemistry, 2012, 24(07): 1398-1404.
[3] Zhang Shibing Wang Ying Liu Changlin. Metal-Based Therapeutic Strategies of Neurodegenerative Diseases [J]. Progress in Chemistry, 2009, 21(05): 903-910.
[4] Zhang Qiuyan,Fan Caiyun,Jia Hongmei**. σ- Receptor Ligands as Imaging Agents [J]. Progress in Chemistry, 2007, 19(05): 713-721.
[5] Liu Qin,Zhang Junyong,Guo Zijian**,Tang Wenxia. Coordination Chemistry in Neurobiology [J]. Progress in Chemistry, 2002, 14(04): 292-.