中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (11): 1722-1733 DOI: 10.7536/PC171112 Previous Articles   Next Articles

• Review •

Preparation of Alginate Composite Gel and Its Application in Water Treatment

Wenhao Yao1, Fei Yu1,2*, Jie Ma3   

  1. 1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
    2. College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China;
    3. Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Foundation of Key Laboratory of Yangtze River Water Environment, Ministry of Education, China(No. YRWEF201606).
PDF ( 1005 ) Cited
Export

EndNote

Ris

BibTeX

Sodium alginate(SA) which is a natural polysaccharide has attracted wide attention not only due to the simple gelatinization conditions and easy operation process, but also its good biodegradability and excellent biocompatibility. Apart from that, compositing with other chemical substances improves the properties of SA gels. They will show a promising application prospect in water treatment area in the future. The article reviews the research advance of the structure characteristics, the physical-chemical and adsorption properties of SA composite gels. Besides, the classifications and preparation methods of SA composite gels are summarized and concluded systematically. In addition, we further analyze and compare the research problems and progress of SA composite gels used as adsorbents in water treatment. At last, we point out the further research direction and applications of SA composite gels in order to provide some suggestion to solve water pollution problems.
Contents
1 Introduction
2 The structure, physicochemical and adsorption properties of alginate
2.1 The structure of alginate
2.2 The physicochemical properties of alginate
2.3 The adsorption properties of alginate
3 Classification of alginate composite gel
3.1 Alginate-carbon materials
3.2 Alginate-oxide composite gel
3.3 Alginate-organic compound gel
3.4 Other alginate compound gel
4 Preparation of alginate-composite gel
4.1 Grafting method
4.2 Sol-gel method
4.3 Packaging method
4.4 One step synthesis method
5 Application of alginate compound gel adsorbent in water treatment
5.1 Heavy metal ions
5.2 Rare earth
5.3 Dye
5.4 Other pollutants
6 Conclusion

CLC Number: 

[1] Wang Z, Huang Y, Wang M, Wu G, Geng T, Zhao Y, Wu A. J. Environ. Chem. Eng., 2016, 4:3185.
[2] Cataldo S, Gianguzza A, Merli M, Muratore N, Piazzese D, Liveri M L T. Journal of Colloid and Interface Science, 2014, 434:77.
[3] Jiao L, Qi P, Liu Y, Wang B, Shan L. Journal of Nanomaterials, 2015, 16:10.
[4] Chen L, Zhang K S, He J Y, Cai X G, Xu W H, Liu J H. RSC Adv., 2016, 6:36296.
[5] Kwiatkowska-Marks S, Wojcik M. Separation Science and Technology, 2014, 49:2204.
[6] Shim J, Lim J M, Shea P J, Oh B T. Journal of Hazardous Materials, 2014, 272:129.
[7] Chiew C S C, Poh P E, Pasbakhsh P, Tey B T, Yeoh H K, Chan E S. Applied Clay Science, 2014, 101:444.
[8] Gurikov P, Raman S P, Weinrich D, Fricke M, Smirnova I. RSC Adv., 2015, 5:7812.
[9] Chiew C S C, Yeoh H K, Pasbakhsh P, Poh P E, Tey B T, Chan E S. Polymer Degradation and Stability, 2016, 123:146.
[10] Wang F, Zhao J, Pan F, Zhou H, Yang X, Li W, Liu H. Ind. Eng. Chem. Res., 2013, 52:3453.
[11] Wang F, Zhao J, Li W, Zhou H, Yang X, Sui N, Liu H. Waste and Biomass Valorization, 2013, 4:665.
[12] Wang F, Zhao J, Wei X, Huo F, Li W, Hu Q, Liu H. Journal of Chemical Technology and Biotechnology, 2014, 89:969.
[13] Pandi K, Viswanathan N. Journal of Applied Polymer Science, 2015, 132:41937.
[14] Uzasci S, Tezcan F, Erim F B. International Journal of Environmental Science and Technology, 2014, 11:1861.
[15] Bertagnolli C, Grishin A, Vincent T, Guibal E. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2017, 52:359.
[16] Deze E G, Papageorgiou S K, Favvas E P, Katsaros F K. Chem. Eng. J., 2012, 209:537.
[17] Liu L, Wan Y, Xie Y, Zhai R, Zhang B, Liu J. Chem. Eng. J., 2012, 187:210.
[18] Inal M, Erduran N. Polymer Bulletin, 2015, 72:1735.
[19] Zhuang Y, Yu F, Chen H, Zheng J, Ma J, Chen J H. J. Mater. Chem. A, 2016, 4:10885.
[20] Yalcin S, Apak R, Boz I. Korean Journal of Chemical Engineering, 2015, 32:2116.
[21] Roosen J, Pype J, Binnemans K, Mullens S. Ind. Eng. Chem. Res., 2015, 54:12836.
[22] Xu S, Wang Z, Gao Y, Zhang S, Wu K. PLoS One, 2015, 10:1.
[23] Bertagnolli C, Grishin A, Vincent T, Guibal E. Ind. Eng. Chem. Res., 2016, 55:2461.
[24] Sarkar K, Ansari Z, Sen K. Int. J. Biol. Macromol., 2016, 91:165.
[25] Ren H X, Gao Z M, Wu D J, Jiang J H, Sun Y M, Luo C W. Carbohydrate Polymers, 2016, 137:402.
[26] Vicini S, Castellano M, Mauri M, Marsano E. Carbohydrate Polymers, 2015, 134:767.
[27] Gad Y H, Aly R O, Abdel-Aal S E. Journal of Applied Polymer Science, 2011, 120:1899.
[28] Gopalakannan V, Viswanathan N. Int. J. Biol. Macromol., 2016, 83:450.
[29] Liu J Q, Ying X G, Wang H X, Li X, Zhang W Y. Journal of Applied Polymer Science, 2016, 133:43617.
[30] Lopez B R, Hernandez J P, Bashan Y, de-Bashan L E. Journal of Microbiological Methods, 2017, 135:96.
[31] Han Y, Li Y, Zeng Q, Li H, Peng J, Xu Y, Chang J. J. Mater. Chem. B, 2017, 5:3315.
[32] Aguero L, Zaldivar-Silva D, Pena L, Dias M L. Carbohydrate Polymers, 2017, 168:32.
[33] Raafat A I, Ali A E H. Polymer Bulletin, 2017, 74:2045.
[34] Sen F, Uzunsoy I, Basturk E, Kahraman M V. Carbohydrate Polymers, 2017, 170:264.
[35] Roosen J, Mullens S, Binnemans K. Ind. Eng. Chem. Res., 2017, 56:8677.
[36] Zhao J C, Ding X G, Meng C, Ren C R, Fu H Q, Yang H. Progress in Nuclear Energy, 2015, 85:713.
[37] Wu D, Gao Y, Li W, Zheng X, Chen Y, Wang Q. Acs Sustainable Chemistry & Engineering, 2016, 4:6732.
[38] Li Z, Yao Y, Wei G, Jiang W, Wang Y, Zhang L. Polymer Engineering and Science, 2016, 56:1382.
[39] Hosseini S, Babadi F E, Soltani S M, Aroua M K, Babamohammadi S, Moghadam A M. Process Safety and Environmental Protection, 2017, 109:387.
[40] Feng J, Ding H, Yang G, Wang R, Li S, Liao J, Li Z, Chen D. Journal of Colloid and Interface Science, 2017, 508:387.
[41] Feng Y, Wang Y, Wang Y, Zhang X F, Yao J. Journal of Colloid and Interface Science, 2018, 512:7.
[42] Tally M, Atassi Y. Polymer Bulletin, 2016, 73:3183.
[43] Wu Y, Qi H, Shi C, Ma R, Liu S, Huang Z. RSC Adv., 2017, 7:31549.
[44] Jiang X, Xiang N, Zhang H, Sun Y, Lin Z, Hou L. Carbohydrate Polymers, 2018, 186:377.
[45] Hosseinzadeh H, Abdi K. J. Inorg. Organomet. Polym. Mater., 2017, 27:1595.
[46] Lv X, Zhang Y, Fu W, Cao J, Zhang J, Ma H, Jiang G. Journal of Colloid and Interface Science, 2017, 506:633.
[47] Xu S X, Wang Z W, Gao Y Q, Zhang S M, Wu K. PLoS One, 2015, 10:12.
[48] Solpan D, Torun M, Gueven G. Journal of Applied Polymer Science, 2008, 108:3787.
[49] Platero E, Emilia Fernandez M, Ricardo Bonelli P, Lea Cukierman A. Journal of Colloid and Interface Science, 2017, 491:1.
[50] Vipin A K, Ling S, Fugetsu B. Carbohydrate Polymers, 2014, 111:477.
[51] Long J J, Wang Y, Xu Y N, Li X. RSC Adv., 2015, 5:10878.
[52] Cataldo S, Gianguzza A, Milea D, Muratore N, Pettignano A. Int. J. Biol. Macromol., 2016, 92:769.
[53] Li C, Lu J, Li S, Tong Y, Ye B. Materials, 2017, 10:84.
[54] Sun L, Fugetsu B. Chem. Eng. J., 2014, 240:565.
[55] Zhang H, Pang X, Qi Y. RSC Adv., 2015, 5:89073.
[56] Liu L, Barford J, Yeung King L. Journal of Environmental Sciences, 2009, 21:700.
[57] Jiao L, Qi P S, Liu Y Z, Wang B, Shan L L. Journal of Nanomaterials, 2015, 16:257.
[58] Wong E T, Chan K H, Idris A. Chem. Eng. J., 2015, 268:311.
[59] Obeid L, El Kolli N, Dali N, Talbot D, Abramson S, Welschbillig M, Cabuil V, Bee A. Journal of Colloid and Interface Science, 2014, 432:182.
[60] Jeon C, Nah I W, Hwang K Y. Hydrometallurgy, 2007, 86:140.
[61] Ashiuchi M, Misono H. Applied Microbiology and Biotechnology, 2002, 59:9.
[62] Salisu A, Sanagi M M, Abu Naim A, Abd Karim K J, Ibrahim W A W, Abdulganiyu U. Polymer Bulletin, 2016, 73:519.
[63] (a)Chassary P, Vincent T, Guibal E. Reactive & Functional Polymers, 2004, 60:137; (b)Ghoul M, Bacquet M, Morcellet M. Water Research, 2003, 37:729.
[64] Li Y, Xia B, Zhao Q, Liu F, Zhang P, Du Q, Wang D, Li D, Wang Z, Xia Y. Journal of Environmental Sciences, 2011, 23:404.
[65] Barreca S, Orecchio S, Pace A. Applied Clay Science, 2014, 99:220.
[66] Cavallaro G, Gianguzza A, Lazzara G, Milioto S, Piazzese D. Applied Clay Science, 2013, 72:132.
[67] Pezeshkpour S, Abdullah A Z, Salamatinia B, Horri B A. Ceramics International, 2017, 43:7123.
[68] Fan J, Shi Z, Lian M, Li H, Yin J. J. Mater. Chem. A, 2013, 1:7433.
[69] Gharekhani H, Olad A, Mirmohseni A, Bybordi A. Carbohydr. Polym., 2017, 168:1.
[70] Wang W, Kang Y, Wang A. Journal of Polymer Research, 2013, 20:1.
[71] Kimling M C, Caruso R A. Journal of Materials Chemistry, 2012, 22:4073.
[72] Zhang S, Xu F, Wang Y, Zhang W, Peng X, Pepe F. Chem. Eng. J., 2013, 234:33.
[73] Tang Z, Peng S, Hu S, Hong S. Journal of Colloid and Interface Science, 2017, 495:191.
[74] Li X, Qi Y, Li Y, Zhang Y, He X, Wang Y. Bioresource Technology, 2013, 142:611.
[75] Badawy M E I, Taktak N E M, Awad O M, Elfiki S A, Abou El-Ela N E. Journal of Macromolecular Science Part B-Physics, 2017, 56:359.
[76] Wang F, Lu X W, Li X Y. Journal of Hazardous Materials, 2016, 308:75.
[77] Chang Y H, Huang C F, Hsu W J, Chang F C. Journal of Applied Polymer Science, 2007, 104:2896.
[78] Zhu L, Zhang L, Tang Y, Kou X. Polymer-Plastics Technology and Engineering, 2014, 53:74.
[79] Park H G, Kim T W, Chae M Y, Yoo I K. Process Biochemistry, 2007, 42:1371.
[80] Zhang L, Wu D B, Zhu B H, Wang L, Fan L Y. Chinese Journal of Analytical Chemistry, 2010, 38:1732.
[81] Zhang L, Wu D, Zhu B, Yang Y, Wang L. Journal of Chemical and Engineering Data, 2011, 56:2280.
[82] Wu D, Zhang L, Wang L, Zhu B, Fan L. Journal of Chemical Technology and Biotechnology, 2011, 86:345.
[83] Rashidzadeh A, Olad A, Salari D. Fibers and Polymers, 2015, 16:354.
[84] Parekh P, Parmar A, Chavda S, Bahadur P. Journal of Dispersion Science and Technology, 2011, 32:1377.
[85] Karadag E, Kasim Z D, Kundakci S, Uzum O B. Fibers and Polymers, 2017, 18:9.
[86] Li G, Du Y, Tao Y, Deng H, Luo X, Yang J. Carbohydrate Polymers, 2010, 82:706.
[87] Mahmoodi N M, Hayati B, Arami M, Bahrami H. Desalination, 2011, 275:93.
[88] Enayatzamir K, Alikhani H A, Yakhchali B, Tabandeh F, Rodriguez-Couto S. Environmental Science and Pollution Research, 2010, 17:145.
[89] Lezehari M, Basly J P, Baudu M, Bouras O. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2010, 366:88.
[90] Fei Y, Yong L, Sheng H, Jie M. Journal of Colloid and Interface Science, 2016, 484:196.
[91] Escudero C, Fiol N, Villaescusa I, Bollinger J C. Journal of Hazardous Materials, 2009, 164:533.
[1] Dandan Wang, Zhaoxin Lin, Huijie Gu, Yunhui Li, Hongji Li, Jing Shao. Modification and Application of Bi2MoO6 in Photocatalytic Technology [J]. Progress in Chemistry, 2023, 35(4): 606-619.
[2] Ying Yang, Shupeng Ma, Yuan Luo, Feiyu Lin, Liu Zhu, Xueyi Guo. Multidimensional CsPbX3 Inorganic Perovskite Materials: Synthesis and Solar Cells Application [J]. Progress in Chemistry, 2021, 33(5): 779-801.
[3] Ying Yang, Yuan Luo, Shupeng Ma, Congtan Zhu, Liu Zhu, Xueyi Guo. Advances of Electron Transport Materials in Perovskite Solar Cells: Synthesis and Application [J]. Progress in Chemistry, 2021, 33(2): 281-302.
[4] Runtian Wang, Chunli Liu, Zhenbin Chen. Imprinted Composite Membranes [J]. Progress in Chemistry, 2020, 32(7): 989-1002.
[5] Weiyang Lv, Ji’an Sun, Yuyuan Yao, Miao Du, Qiang Zheng. Morphology Control of Layered Double Hydroxide and Its Application in Water Remediation [J]. Progress in Chemistry, 2020, 32(12): 2049-2063.
[6] Wei Li, Ziyu Yang, Yanglong Hou, Song Gao. Controllable Preparation and Magnetism Control of Two-Dimensional Magnetic Nanomaterials [J]. Progress in Chemistry, 2020, 32(10): 1437-1451.
[7] Ze Feng, Dan Sun, Yougen Tang, Haiyan Wang. Rich-Nickel Ternary Layered Oxide LiNi0.8Co0.1Mn0.1O2 Cathode Material [J]. Progress in Chemistry, 2019, 31(2/3): 442-454.
[8] Lu Jia, Jianzhong Ma, Dangge Gao, Bin Lv. Layered Double Hydroxides/Polymer Nanocomposites [J]. Progress in Chemistry, 2018, 30(2/3): 295-303.
[9] Xiaoyan He*, Liqin Liu, Meng Wang, Caiyun Zhang, Yunlei Zhang, Minhui Wang. The Research of the Anisotropic Hydrogel's Properties and Preparation [J]. Progress in Chemistry, 2017, 29(6): 649-658.
[10] Xu Zhao, Keqing Wang, Bo Li, Changqing Li, Yuqing Lin*. Preparation, Surface Modification and in vivo/Single Cell Electroanalytical Application of Microelectrode [J]. Progress in Chemistry, 2017, 29(10): 1173-1183.
[11] Zhao Fengyang, Mi Yifang, An Quanfu, Gao Congjie. Preparation and Applications of Positively Charged Polyethyleneimine Nanofiltration Membrane [J]. Progress in Chemistry, 2016, 28(4): 541-551.
[12] Xia Wen, Li Zheng, Xu Yinli, Zhuang Xupin, Jia Shiru, Zhang Jianfei. Bacterial Cellulose Based Electrode Material for Supercapacitors [J]. Progress in Chemistry, 2016, 28(11): 1682-1688.
[13] Tang Zhijiao, Li Gongke*, Hu Yuling*. Advances in Preparation and Applications in Quantitative Analysis of Nitrogen-Doped Carbon Dots [J]. Progress in Chemistry, 2016, 28(10): 1455-1461.
[14] Tang Yuanyuan, Xu Jia, Chen Xing, Gao Congjie. Core of Forward Osmosis for Desalination——Forward Osmosis Membrane [J]. Progress in Chemistry, 2015, 27(7): 818-830.
[15] Ying Hangjun, Tian Huajun, Meng Zhen, Han Weiqiang. TinO2n-1 Series Compounds——Properties, Preparation Methods and Applications [J]. Progress in Chemistry, 2015, 27(4): 361-372.