中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (9): 1455-1462 DOI: 10.7536/PC171233 Previous Articles   

• Review •

Disposable Catalysts for Coal Gasification

Jiwei Lv, Xianquan Ao*, Qianlin Chen, Yan Xie, Yang Cao, Jifang Zhang   

  1. College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the Major Applied Basic Research Project of Guizhou Provincial Science and Technology Department(No. 20142004) and the Major Projects of Guizhou Provincial Science and Technology Department(No. 20156011).
PDF ( 453 ) Cited
Export

EndNote

Ris

BibTeX

Catalytic coal gasification technology is essential to improve the efficiency of coal gasification. At present, alkali metals, alkaline earth metals and transition metal catalysts have poor application induced by their high cost and difficulty in recovery except for CaCO3. Disposable catalysts have got a multitude of attention on research and application of coal gasification in recent years, which have the advantages of being cheap, disposable, environmentally friendly, and capable of adjusting the ash melt characteristic and sulfation reaction. In this paper, the progress of several kinds of disposable catalysts in the field of coal gasification is reviewed, including the catalytic properties and mechanism of catalysts such as calcium based catalysts, waste water catalysts, waste solid catalysts and biomass ash catalysts, the problems in practical application are discussed, and the challenges and perspectives of the coal gasification catalysts are also prospected.
Contents
1 Introduction
2 Types of disposable catalysts and their catalytic mechanism
2.1 Calcium based catalysts
2.2 Industrial waste water catalysts
2.3 Industrial waste solid catalysts
2.4 Biomass catalysts
3 Conclusion and outlook

CLC Number: 

[1] Gao M Q, Lv P, Yang Z R, Bai Y H, Li F, Xie K C. Fuel, 2017, 206:107.
[2] Li C Z. Fuel, 2013, 112(3):610.
[3] Monterroso R, Fan M H, Zhang F, Gao Y, Popa T, Argyle M D, Towler B, Sun Q Y. Fuel, 2014, 116(116):341.
[4] Chen Z H, Lai D G, Bai L Q, Tian Y, Gao S Q, Xu G W, Tsutsumi A. Fuel Process.Technol, 2015, 140:88.
[5] Mostafavi E, Mahinpey N, Manovic V. Catal. Today, 2014, 237:111.
[6] Fan S M, Yuan X Z, Zhao L, Xu L H, Kang T J, Kim H T. Fuel, 2016, 165:397.
[7] Zhang F, Xu D P, Wang Y G. Fuel Process. Technol., 2015, 130:107.
[8] Wang Y W, Wang Z Q, Huang J J, Fang Y T. Energy Fuels, 2015, 29(11):6988.
[9] Hippo E J. US 11421507, 2007.
[10] 毕继诚(Bi J C). CN 2010/001406, 2011.
[11] 陈兆辉(Chen Z H), 刘雷(Liu L), 金亚丹(Jin Y D), 吴丽锋(Wu L F), 武恒(Wu H), 湛月平(Zhan Y P), 李克忠(Li K Z), 毕继诚(Bi J C). 化工学报(Journal of Chemical Industry and Engineering). 2017, 68(5):2155.
[12] Lin S Y, Suzuki Y, Hatano H, Harada M. Energ. Convers. Manage., 2002, 43:1290.
[13] Tang J, Wang J. Fuel Process.Technol., 2016, 142:34.
[14] Freek K, Hans P,Moulijn J A. AlChE J., 1986, 32(4):691.
[15] Popa T, Fan M, Argyle M D, Dyar M D, Gao Y, Tang J, Speicher E A, Kammen D M. Appl Catal A-Gen., 2013, s464/465(6):207.
[16] Mei Y G, Wang Z Q, Fang H B, Wang Y W, Huang J J, Fang Y T. Energy Fuels, 2017, 31(2):1235.
[17] Ding L, Zhou Z J, Huo W, Wang Y F, Yu G S. Ind. Eng. Chem. Res., 2014, 53(49):19159.
[18] Murakami K, Masahiko S, Naoto T, Ohtsuka Y, Katsuyasu S. Fuel Process.Technol., 2015, 129:96.
[19] Ohtsuka Y, Kenji A. Energy Fuels, 1996, 10(2):434.
[20] 孙钟华(Sun Z H), 代正华(Dai Z H), 周志杰(Zhou Z J), 于广锁(Yu G S). 中国电机工程学报(Proceedings of the CSEE), 2011, 31(20):8.
[21] 刘锦启(Liu J Q), 陈前林(Chen Q L), 王景行(Wang J H). 煤炭学报(Journal of China Coal Society), 2013, 38(s2):485.
[22] Li N, Li Y, Zhou H C, Liu Y, Song Y M, Zhi K D, He R X, Yang K L, Liu Q S. Fuel, 2017, 203:823.
[23] 李阳(Li Y), 刘洋(Liu Y), 冯伟(Feng W), 赵斌(Zhao B), 智科端(Zhi K R), 滕英跃(Teng Y Y), 宋银敏(Song Y M), 何润霞(He R X), 周晨亮(Zhou C L), 刘全生(Liu Q S).燃料化学学报(Journal of Fuel Chemistry and Technology), 2015, 43(9):1042.
[24] Kuznetsov P N, Kolesnikova S M, Kuznetsova L I. Int.J.Clean.Coal.Energ., 2013, 02(1):8.
[25] Kuznetsov P N, Kuznetsova L I, Mikhlin Y L. Fuel, 2015, 162:209.
[26] Lin S Y, Wang Y, Suzuki Y. Energy Fuels, 2007, 21(5):2767.
[27] 王少龙(Wang S L), 张鹏飞(Zhang P F), 周松华(Zhou S H), 谢燕(Xie Y), 曹阳(Cao Y), 敖先权(Ao X Q). 过程工程学报(The Chinese Journal of Process Engineering), 2017, 17(6):1325.
[28] Diego L F D, Abad A, Garcíalabiano F, Adánez J, Gayán P. Ind. Eng. Chem. Res., 2004, 43(13):3261.
[29] lvarez-Rodríguez R, Clemente-Jul C. Fuel, 2008, 87(17):3520.
[30] Jia Y B, Huang J J, Wang Y. Energy Fuels, 2004, 18(6):1632.
[31] Shuai C, Hu S, He L, Xiang J, Sun L S, Su S, Jiang L, Chen Q D, Xu C F. Int. J. Hydrogen Energy, 2014, 39(28):15509.
[32] 陈兆辉(Chen Z H), 刘雷(Liu L), 武恒(Wu H), 裴增楷(Pei Z K), 湛月平(Zhan Y P), 李克忠(Li K Z), 郑岩(Zheng Y), 吴丽锋(Wu L F), 毕继诚(Bi J C). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2016, 44(10):1165.
[33] Chen Z H, Dun Q M, Shi Y, Lai D G, Zhou Y, Gao S Q, Xu G W. Chem. Eng. J., 2017, 316:846.
[34] Zhang L X, Kudo S, Tsubouchi N, Hayashi J, Ohtsuka Y, Norinaga K. Fuel Process. Technol., 2013, 113:6.
[35] Shao S, Chen X G, Liu H, Wang F Y. Energ Source.Part A, 2012, 34(10):927.
[36] Xiang Y, Wang R K, Liu J Z, Zhu J F, Zhou J H, Cen K F. Pet.Sci.Technol., 2016, 34(11/12):1073.
[37] Jaffri G R, Zhang J Y. J. Fuel. Chem. Technol., 2007, 35(2):134.
[38] Jaffri G R, Zhang J Y. Chin. J. Chem. Eng., 2007, 15(5):675.
[39] Jaffri G R, Zhang J Y. Chin. J. Chem. Eng., 2008, 16(4):578.
[40] Gea G, Murillo M B, Arauzo J. Ind. Eng. Chem. Res., 2002, 41(19):4717.
[41] Kuang J P, Zhou J H, Zhou Z J, Liu J Z, Cen K F. Energy Convers. Manage., 2008, 49(2):255.
[42] Yuh S J, Wolf E E. Fuel, 1984, 63(11):1608.
[43] Jaffri G R, Zhang J Y. J.Fuel.Chem.Technol., 2008, 36(4):412.
[44] Cao C Q, Guo L J, Yin J R, Hui J, Wen C, Yi J, Yao X D. Energy Fuels, 2014, 29(1):391.
[45] Kuang J P, Zhou J H, Zhou Z J, Liu J Z, Cen K F. Asia-Pac.J.Chem.Eng., 2010, 2(3):156.
[46] 周俊虎(Zhou J H), 匡建平(Kuang J P), 周志军(Zhou Z J), 林妙(Lin M), 刘建忠(Liu J Z), 岑可法(Cen K F). 高校化学工程学报(Journal of Chemical Engineering of Chinese Universities), 2007, 21(1):86.
[47] 李海宾(Li H B), 韩敏芳(Han M F). 煤炭学报(Journal of China Coal Society), 2015, 40(s1):238.
[48] Parvez A M, Mujtaba L M, Pang C H, Wu T. Fuel Process. Technol., 2016, 149:236.
[49] Winaya I N S, Hartati R S, Lokantara I P, Subawa I G, Putrawan I M A. Int.J.Technol., 2015, 6(6):931.
[50] André R N, Pinto F, Franco C, Dias M, Gulyurtlu I, Matos M A A, Cabrita I. Fuel, 2005, 84:1638.
[51] Mallick D, Mahanta P, Moholkar V S. Fuel, 2017, 204:106.
[52] Fernandes R, Hill J M, Kopyscinski J. Energy Fuels, 2017, 31(2):1842.
[53] Yan L B, Cao Y, He B S. Chem. Eng. J., 2018, 331:438.
[54] 张德成(Zhang D C), 敖先权(Ao X Q), 陈前林(Chen Q L), 曹阳(Cao Y), 谢燕(Xie Y), 罗焕虎(Luo H H), 张纪芳(Zhang J F).过程工程学报(The Chinese Journal of Process Engineering), 2016, 16(4):633.
[55] Howaniec N, Smoliński A. Energy, 2017, 118(1):20.
[56] Qin Y H, Han Q Q, Zhao Z B, Du Z Y, Feng J, Li W Y, Vassilev S V, Vassileva C G. Fuel, 2017, 202:561.
[57] Wei J T, Gong Y, Guo Q H, Ding L, Wang F C, Yu G S. Bioresour.Technol., 2017, 227:352.
[58] Feng P, Lin W G, Jensen P A, Song W L, Hao L F, Raffelt K, Johansen K D. Energy, 2016, 111:793.
[59] Masnadi M S, Grace J R, Bi X T, Lim C J, Ellis N. Appl.Energ., 2015, 140:205.
[60] Ding L, Zhang Y Q, Wang Z Q, Huang J J, Fang Y T. Bioresour.Technol., 2014, 173:16.
[61] Ellis N, Masnadi M S, Roberts D G, Kochanek M A, Ilyushechkin A Y. Chem. Eng. J., 2015, 279:402.
[62] Rizkiana J, Guan G Q, Widayatno W B, Hao X G, Li X M, Huang W, Abudula A. Appl.Energ., 2014, 133(6):288.
[63] Ding L, Gong Y, Wang Y F, Wang F C, Yu G S. Appl.Energ., 2017, 195:723.
[64] Brown R C, Liu Q, Norton G. Biomass Bioenergy, 2000, 18:499.
[65] Masnadi M S, Grace J R, Bi X T, Lim C J, Ellis N, Li Y H, Watkinson A P. Renew.Energ., 2015, 83:918.
[66] Kongsomart B, Kannari N, Takarada T. Int. J.Biomass.Renew., 2016, 5(2):12.
[67] Sams D A, Shadman F. AlChE J., 1986, 32(7):1137.
[68] Zhang Z Y, Pang S S, Levi T. Renew.Energ., 2017, 101:361.
[69] 姚奎(Yao K), 张金刚(Zhang J G), 竹怀礼(Zhu H L), 王兴军(Wang X J), 于广锁(Yu G S), 刘海峰(Liu H F), 王辅臣(Wang F C). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2017, 45(1):27.
[70] Lu J J, Chen W H. Appl. Energ., 2015, 160:56.
[71] Zhang Y, Zheng Y, Yang M J, Song Y C. Bioresour.Technol., 2016, 200:791.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[3] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[4] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[5] Dang Zhang, Xi Wang, Lei Wang. Biomedical Applications of Enzyme-Powered Micro/Nanomotors [J]. Progress in Chemistry, 2022, 34(9): 2035-2050.
[6] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[7] Huiyue Wang, Xin Hu, Yujing Hu, Ning Zhu, Kai Guo. Enzyme-Catalyzed Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2022, 34(8): 1796-1808.
[8] Ru Jiang, Chenxu Liu, Ping Yang, Shuli You. Condensed Matter Chemistry in Asymmetric Catalysis and Synthesis [J]. Progress in Chemistry, 2022, 34(7): 1537-1547.
[9] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[10] Peng Wang, Huan Liu, Da Yang. Recent Advances on Tandem Hydroformylation of Olefins [J]. Progress in Chemistry, 2022, 34(5): 1076-1087.
[11] Xiaoqing Ma. Graphynes for Photocatalytic and Photoelectrochemical Applications [J]. Progress in Chemistry, 2022, 34(5): 1042-1060.
[12] Xiaowei Li, Lei Zhang, Qixin Xing, Jinyu Zan, Jin Zhou, Shuping Zhuo. Construction of Magnetic NiFe2O4-Based Composite Materials and Their Applications in Photocatalysis [J]. Progress in Chemistry, 2022, 34(4): 950-962.
[13] Fengshou Yu, Jiayu Zhan, Lu-Hua Zhang. The progress on Electrochemical CO2-to-Formate Conversion by p-Block Metal Based Catalysts [J]. Progress in Chemistry, 2022, 34(4): 983-991.
[14] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[15] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
Viewed
Full text


Abstract

Disposable Catalysts for Coal Gasification