中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (6): 864-871 DOI: 10.7536/PC170927 Previous Articles   Next Articles

• Review •

Transparent Antifogging Materials

Xiao Li1,2, Ling Ai1, Jing Zhang1, Xianpeng Zhang1, Yuehui Lu1*, Weijie Song1   

  1. 1. Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
    2. Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.61574144,61605224),the Zhejiang Provincial Natural Science Foundation (No.LY15F050003,LY17A040004),and the Ningbo City Natural Science Foundation (No.2016A610053,2017A610021).
PDF ( 1560 ) Cited
Export

EndNote

Ris

BibTeX

Transparent materials play an important role in our daily life as well as industrial manufacturing. However, fog often occurs on the transparent surfaces, possibly leading to unavailability and economic loss. Therefore, it is of great significance to study the means to prevent the transparent surfaces from fogging using antifogging coatings. This review introduces the fundamentals in antifogging and the two routes to realize antifogging surfaces, i.e., hydrophilic and hydrophobic antifogging. Accordingly, the state of the art antifogging materials and fabrication are introduced in detail. Finally, a perspective on applications and future development of antifogging materials is provided.
Contents
1 Introduction
2 Antifogging mechanism
3 Hydrophilic antifogging
3.1 Functionalized polymer antifogging materials
3.2 Inorganic antifogging materials
3.3 Organic-inorganic hybrid antifogging materials
4 Hydrophobic antifogging
5 Conclusion and perspective

CLC Number: 

[1] Reitan C H. J. Appl. Meteor., 1963, 2:776.
[2] Patel P, Choi C K, Meng D D. J. Assoc. Lab.Autom.,2010, 15:114.
[3] Chae S S, Kim K H, Park J H, Lee K H, Han S W, Oh J Y, Baik H K, Kim Y S. Adv. Mater. Interfaces, 2016, 3.1500752.
[4] Li Y X, Xu F, Wang Y, Ma B H, Sun J Q. Chem. Mater., 2016, 28:6975.
[5] Zhang L, Qiao Z A, Zheng M, Huo Q S,Sun J Q. J. Mater. Chem., 2010, 20:6125.
[6] Li Y F, Zhang J H, Zhu S J, Dong H P, Jia F, Wang Z H, Sun Z Q, Li Y, Li H B, Xu W Q, Yang B. Adv. Mater., 2009, 21:4731.
[7] Zhou G, He J H, Xu L G. Microporous Mesoporous Mater., 2013, 176:41.
[8] Gwon H J, Park Y, Moon C W, Nahm S, Yoon S J, Kim S Y, Jang H W. Nano Res., 2014, 7:670.
[9] Park J T, Kim J H, Lee D. Nanoscale, 2014, 6:7362.
[10] Kim J G, Choi H J, Park K C, Cohen R E, McKinley G H, Barbastathis G. Small, 2014, 10:2487.
[11] Sun Z Q, Liao T, Liu K S, Jiang L, Kim J H. Dou S X. Small, 2014, 10:3001.
[12] Checco A, Rahman A, Black C T. Adv. Mater., 2014, 26:886.
[13] Wen L P, Tian Y, Jiang L. Angew. Chem. Int. Ed., 2015, 54:3387.
[14] Young T, Pritchard R H, West R G. Philos. Trans., 1805, 95:65.
[15] Smith J D, Dhiman R, Anand S, Reza G E, Cohen R E, McKinley G H, Varanasi K K. Soft Matter, 2013, 9:1772.
[16] Wenzel R N. Ind. Eng. Chem., 1936, 28:988.
[17] Forsberg P S H, Priest C, Brinkmann M, Sedev R, Ralston J. Langmuir, 2009, 26:860.
[18] Lafuma A, Quéré D. Nat. Mater., 2003, 2:457.
[19] Cassie A B D, Baxter S. Trans. Fara. Soc., 1944, 40:546.
[20] Peters A M, Pirat C, Sbragaglia M, Borkent B M, Wessling M, Lohse D, Lammertink R G H. Eur. Phys. J., 2009, 29:391.
[21] Murakami D, Jinnai H, Takahara A. Langmuir, 2014, 30:2061.
[22] Zhao J, Meyer A, Ma L, Wang X J, Ming W H. RSC Adv., 2015, 5:102560.
[23] Park S, Park S, Jang D H, Lee H S, Park C H. Mater. Lett., 2016, 180:81.
[24] Shibraen M H M A, Yagoub H, Zhang X J, Xu J, Yang S G. Appl. Surf. Sci., 2016, 370:1.
[25] Zhang W H, Zhu L Q, Ye H, Liu H C, Li W P. RSC Adv., 2016, 6:92252.
[26] Zhang X J, He J H. Int. J.Nanosci., 2014, 14:1460015.
[27] Zhang X J, He J H. Sci. Rep., 2015, 5:9227.
[28] Zhang X J, He J H. Chem. Commun., 2015, 51:12661.
[29] Zhang X J, He J H, Jin B B. Sci. Rep., 2016, 6:33494.
[30] England M W, Urata C, Dunderdale G J, Hozumi A. ACS Appl. Mater. Interfaces, 2016, 8:4318.
[31] Nam E, Wong E H H, Tan S, Fu Q, Blencowe A, Qian G G. Macromo. Mater. Eng., 2017, 302:1600199.
[32] Zhao J, Ma L, Millians W, Wu T H, Ming W H. ACS Appl. Mater. Interfaces, 2016, 8:8737.
[33] Zheng J Y, Bao S H, Jin P. Nano Energy, 2015, 11:136.
[34] Xiong Y B, Lai M, Li J, Yong H B, Qian H Z, Xu C Q, Zhong K, Xiao S R. Surf. Coat. Technol., 2015, 265:78.
[35] Eshaghi A, Mojab M. J Non-Cryst. Solids, 2014, 405:148.
[36] Yao L, He J H, Geng Z, Ren T T. Nanoscale, 2015, 7:13125.
[37] Zhang X P, Lan P J, Lu Y H, Li J, Xu H, Zhang J, Lee Y P, Rhee J Y, Choy K L, Song W J. ACS Appl. Mater. Interfaces, 2014, 6:1415.
[38] Chen J, Zhang L, Zeng Z, Wang G, Liu G M, Zhao W J, Ren T H, Xue Q J. Colloids Surf. A:Phys. Eng. Aspects, 2016, 509:149.
[39] Liu F, Shen J, Zhou W Y, Zhang S Y, Wan L. RSC Adv., 2017, 7:15992.
[40] Yao L, He J H. J. Mater. Chem. A., 2014, 2:6994.
[41] Li X Y, He J H. ACS Appl. Mater. Interfaces, 2012, 4:2204.
[42] Xu L G, He J H, Yao L. ACS Appl. Mater. Interfaces, 2012, 4:3293.
[43] Huang K T, Yeh S B, Huang C J. ACS Appl. Mater. Interfaces, 2015, 7:21021.
[44] Hu X, Yu Y, Wang Y, Wang Y Q, Zhou J E, Song L X. Mater. Lett., 2016, 182:372.
[45] Du X, He J H. Langmuir, 2011, 27:2972.
[46] Du X, He J H. J Colloid Interface Sci., 2012, 381:189.
[47] Xu L G, He J H, Yao L. J. Mater. Chem. A., 2014, 2:402.
[48] Chang Y, Li Y, Wang J, Wang C W. Mater. Lett., 2017, 187:162.
[49] Saxena N, Naik T, PariaS. J. Phys. Chem. C, 2017, 121:2428.
[50] Wei H S, Liu K T, Chang Y C, Chan C H, Lee C C, Kuo C C. Surf. Coat. Technol., 2017, 320:377.
[51] Wu Y W, Hang T, Yu Z Y, Xu L, Li M. Chem. Commun., 2014, 50:8405.
[52] Jiang L, Zhao Y, Zhai J. Angew. Chem., 2004, 116:4438.
[53] Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis S H, Fotakis C. Adv. Mater., 2008, 20:4049.
[54] Zheng Y M, Bai H, Huang Z B, Tian X L, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463:640.
[55] Wang Y F, Wang X W, Lai C L, Hu H W, Kong Y Y, Fei B, Xin J H. ACS Appl. Mater. Interfaces, 2016, 8:2950.
[56] Liu C C, Ju J, Zheng Y M, Jiang L. ACS Nano, 2014, 8:1321.
[57] Geim A K, Dubonos S V, Grigorieva I V, Novoselov K S, Zhukov A A, Shapoval S Y. Nat. Mater., 2003, 2:461.
[58] Kustandi T S, Samper V D, Yi D K, Ng W S, Neuzil P. Sun W. Adv. Funct. Mater., 2007, 17:2211.
[59] Scholz I, Bückins M, Dolge L, Erlinghagen T, Weth A, Hischen, F, Mayer J, Hoffmann S, Riederer M, Riedel M, Baumgartener W. J. Exp. Biol., 2010, 213:1115.
[60] Mouterde T, Lehoucq G, Xavier S, Checco A, Black C T, Ranman A, Midavaine T, Clanet C, Quere D. Nat. Mater., 2017, 16:658.
[61] Zhang M Q, Wang L, Feng S L, Zheng Y M. Chem. Mater., 2017, 29:2899.
[62] Wen M X, Wang L, Zhang M Q, Jiang L, Zheng Y M. ACS Appl. Mater. Interfaces, 2014, 6:3963.
[63] Shang Q Q, Zhou Y H. Ceram. Int., 2016, 42:8706.
[64] 刘湘梅(Liu X M), 贺军辉(He J H). 化学进展(Progress in Chemistry), 2010, 22:270.
[1] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[2] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[3] Xiangkang Cao, Xiaoguang Sun, Guangyi Cai, Zehua Dong. Durable Superhydrophobic Surfaces: Theoretical Models, Preparation Strategies, and Evaluation Methods [J]. Progress in Chemistry, 2021, 33(9): 1525-1537.
[4] Jinhua Liao, Jiajun Gao, Yuchao Wang, Wei Sun. Preparation and Application of Micro-Structured Elastomer Dielectric Layer [J]. Progress in Chemistry, 2021, 33(6): 975-987.
[5] Yue Li, Yamei Lu, Pengfei Wang, Yingze Cao, Chun’ai Dai. Preparation and Application of Transparent Superhydrophobic Materials [J]. Progress in Chemistry, 2021, 33(12): 2362-2377.
[6] Xiaojian Li, Haijun Zhang, Saisai Li, Jun Zhang, Quanli Jia, Shaowei Zhang. Preparation of Superhydrophilic and Oleophobic Materials and Their Oil-Water Separation Properties [J]. Progress in Chemistry, 2020, 32(6): 851-860.
[7] Yonggang Guo, Yachao Zhu, Xin Zhang, Bingpeng Luo. Effects of Superhydrophobic Surface on Tribological Properties: Mechanism, Status and Prospects [J]. Progress in Chemistry, 2020, 32(2/3): 320-330.
[8] Jing Yuan, Fangfang Liao, Yani Guo, Liyun Liang. Preparation and Performance of Superhydrophilic and Superoleophobic Membrane for Oil/Water Separation [J]. Progress in Chemistry, 2019, 31(1): 144-155.
[9] Lingang Hou, Lili Ma, Yichen Zhou, Yu Zhao, Yi Zhang, Jinmei He*. Application of Low Surface Energy Compounds to the Superwetting Materials [J]. Progress in Chemistry, 2018, 30(12): 1887-1898.
[10] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
[11] Weizhen Liu, Jiayi Zheng, Zhicheng Wu, Zhangbin Liu, Zhang Lin. The Application of Micro-Mechanism of Crystal Changes under the Surface/Interface Control in Treating Chromium-Containing Residues [J]. Progress in Chemistry, 2017, 29(9): 1053-1061.
[12] Na Niu, Zhiying Li, Tingting Gao, Yudong Liu, Xiaoli Liu, Fengqi Liu*. Hydrophobic Association Hydrogel [J]. Progress in Chemistry, 2017, 29(7): 757-765.
[13] Haikun Zheng, Shinan Chang, Yuanyuan Zhao. Anti-Icing & Icephobic Mechanism and Applications of Superhydrophobic/Ultra Slippery Surface [J]. Progress in Chemistry, 2017, 29(1): 102-118.
[14] Yang Wolong, Ji Xianbing, Xu Jinliang. Superhydrophilic Surfaces: From Nature to Biomimetics to Application [J]. Progress in Chemistry, 2016, 28(6): 763-772.
[15] Wang Yali, Li Zhen, Liu Zhihong. Water Solubilization of Upconversion Nanoparticles [J]. Progress in Chemistry, 2016, 28(5): 617-627.
Viewed
Full text


Abstract

Transparent Antifogging Materials