中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (1): 124-136 DOI: 10.7536/PC171102 Previous Articles   

• Review •

Catalytic Oxidation of Cyclohexane by O2 as an Oxidant

Yuanbin She, Jinhui Deng, Long Zhang, Haimin Shen*   

  1. College of Chemical Engineering, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476270, 21306176, 21776259).
PDF ( 1241 ) Cited
Export

EndNote

Ris

BibTeX

Recent progress in catalytic oxidation of cyclohexane employing O2 as an oxidant have been reviewed, including the metal complex catalysis, metal nanoparticle catalysis, metal oxide particle catalysis, molecular sieve catalysis, carbon material catalysis, photo-promotion catalysis, polyoxometalates catalysis, metal-organic framework material catalysis and so on. It is pointed out that the research and development of heterogeneous catalytic system by O2 as an oxidant with high activity and selectivity will be the focus of catalytic oxidation of cyclohexane in the future, especially for the multi-metal composite system, even the multi-element composite system. This paper will not only act as an important reference in the research and development of catalytic system of cyclohexane with high activity and selectivity, and to improve the preparation process of cyclohexanol and cyclohexanone in industry, but also act as an important reference in the research and development of catalytic system for other hydrocarbon oxidation and non-hydrocarbon oxidation.
Contents
1 Introduction
2 Metal complex catalysis
2.1 Non metalloporphyrin catalysis
2.2 Metalloporphyrin catalysis
3 Metal nanoparticle catalysis
4 Metal oxide particle catalysis
5 Molecular sieve catalysis
6 Carbon material catalysis
7 Photo-promotion catalysis
8 Other catalysis
9 Conclusion

CLC Number: 

[1] Hitomi Y, Arakawa K, Funabiki T, Kodera M. Angew. Chem. Int. Ed., 2012, 51:3448.
[2] Perraud O, Sorokin A B, Dutasta J P, Martinez A. Chem. Commun., 2013, 49:1288.
[3] Garcia-Bosch I, Siegler M A. Angew. Chem. Int. Ed., 2016, 55:12873.
[4] Wang B, Lee Y M, Clemancey M, Seo M S, Sarangi R, Latour J M, Nam W. J. Am. Chem. Soc., 2016, 138:2426.
[5] Xie Y J, Zhang F Y, Liu P L, Hao F, Luo H A. Ind. Eng. Chem. Res., 2015, 54:2425.
[6] Huang G, Liu Y, Cai J L, Chen X F, Zhao S K, Guo Y A, Wei S J, Li X. Appl. Surf. Sci., 2017, 402:436.
[7] Machado G S, de Lima O J, Ciuffi K J, Wypych F, Nakagaki S. Catal. Sci. Technol., 2013, 3:1094.
[8] Ucoski G M, Castro K A D D, Ciuffi K J, Ricci G P, Marques J A, Nunes F S, Nakagaki S. Appl. Catal. A-Gen., 2011, 404:120.
[9] Machado G S, Wypych F, Nakagaki S. Appl. Catal. A-Gen., 2012, 413:94.
[10] Ferreira G K B, Castro K A D D, Machado G S, Ribeiro R R, Ciuffi K J, Ricci G P, Marques J A, Nakagaki S. J. Mol. Catal. A-Chem., 2013, 378:263.
[11] Barbosa I A, de Sousa P C, da Silva D L, Zanardi F B, Zanatta L D, de Oliveira A J A, Serra O A, Iamamoto Y. J. Colloid Interface Sci., 2016, 469:296.
[12] Da Silva V S, Teixeira L I, do Nascimento E, Idemori Y M, DeFreitas-Silva G. Appl. Catal. A-Gen., 2014, 469:124.
[13] Da Silva V S, Meireles A M, Martins D C D, Reboucas J S, DeFreitas-Silva G, Idemori Y M. Appl. Catal. A-Gen., 2015, 491:17.
[14] Da Silva V S, dos Santos Vieira W C, Meireles A M, Ucoski G M, Nakagaki S, Idemori Y M, DeFreitas-Silva G. New J. Chem., 2017, 41:997.
[15] Singha S, Parida K M, Dash A C. J. Porous Mater., 2011, 18:707.
[16] Feng D W, Jiang H L, Chen Y P, Gu Z Y, Wei Z W, Zhou H C. Inorg. Chem., 2013, 52:12661.
[17] Sharbatdaran M, Farzaneh F, Larijani M M, Salimi A, Ghiasi M, Ghandi M. Polyhedron, 2016, 115:264.
[18] Khomane S B, Doke D S, Dongare M K, Halligudi S B, Umbarkar S B. Appl. Catal. A-Gen., 2017, 531:45.
[19] Zhang Y C, Zhao L Y, Zhang H Y, Huang R, Zhao J Q. Appl. Organomet. Chem., 2017, 31:3709.
[20] Bose S, Pariyar A, Biswas A N, Das P, Bandyopadhyay P. Catal. Commun., 2011, 12:1193.
[21] Balamurugan M, Mayilmurugan R, Suresh E, Palaniandavar M. Dalton Trans., 2011, 40:9413.
[22] Sankaralingam M, Vadivelu P, Suresh E, Palaniandavar M. Inorg. Chim. Acta, 2013, 407:98.
[23] Zhang S B, Wang H, Li M, Han J Y, Liu X, Gong J L. Chem. Sci., 2017, 8:4489.
[24] Zadehahmadi F, Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Khosropour A R, Kardanpour R. Appl. Catal. A-Gen., 2014, 477:34.
[25] Pires B M, Silva D M, Visentin L C, Drago V, Carvalho N M F, Faria R B, Antunes O A C. Inorg. Chim. Acta, 2013, 407:69.
[26] Grau M, Kyriacou A, Martinez F C, de Wispelaere I M, White A J P, Britovsek G J P. Dalton Trans., 2014, 43:17108.
[27] Kirillova M V, de Paiva P T, Carvalho W A, Mandelli D, Kirillov A M. Pure Appl. Chem., 2017, 89:61.
[28] Chand S S, Sinha S. J. Appl. Polym. Sci., 2013, 130:2127.
[29] Rodionova L I, Smirnov A V, Borisova N E, Khrustalev V N, Moiseeva A A, Grunert W. Inorg. Chim. Acta, 2012, 392:221.
[30] Machado K, Mishra J, Suzuki S, Mishra G S. Dalton Trans., 2014, 43:17475.
[31] Liu C C, Ramu R, Chan S I, Mou C Y, Yu S S F. Catal. Sci. Technol., 2016, 6:7623.
[32] Huang G, Wang W L, Ning X X, Liu Y, Zhao S K, Guo Y A, Wei S J, Zhou H. Ind. Eng. Chem. Res., 2016, 55:2959.
[33] Wu P P, Xiong Z G, Loh K P, Zhao X S. Catal. Sci. Technol., 2011, 1:285.
[34] Zhou J C, Yang X F, Wang Y Q, Chen W J. Catal. Commun., 2014, 46:228.
[35] Alshammari A, Kalevaru V N, Martin A. Catalysts, 2016, 6:97.
[36] Song X F, Hao J M, Bai Y J, Han L M, Yan G F, Lian X, Liu J S. New J. Chem., 2017, 41:4031.
[37] Liu X, Conte M, Weng W H, He Q, Jenkins R L, Watanabe M, Morgan D J, Knight D W, Murphy D M, Whiston K, Kiely C J, Hutchings G J. Catal. Sci. Technol., 2015, 5:217.
[38] Conte M, Liu X, Murphy D M, Taylor S H, Whiston K, Hutchings G J. Catal. Lett., 2016, 146:126.
[39] Li J, Shi Y, Xu L, Lu G Z. Ind. Eng. Chem. Res., 2010, 49:5392.
[40] Duan X G, Liu W M, Yue L M, Fu W, Ha M N, Li J, Lu G Z. Dalton Trans., 2015, 44:17381.
[41] Cao Y H, Luo X Y, Yu H, Peng F, Wang H J, Ning G Q. Catal. Sci. Technol., 2013, 3:2654.
[42] Ide Y, Iwata M, Yagenji Y, Tsunoji N, Sohmiya M, Komaguchi K, Sano T, Sugahara Y. J. Mater. Chem. A, 2016, 4:15829.
[43] Wang H, Zhang Y, Guo Y Y, Zhang L M, Han Y, Zhao X X. RSC Adv., 2016, 6:38176.
[44] Tsukamoto D, Shiro A, Shiraishi Y, Hirai T. J. Phys. Chem. C, 2011, 115:19782.
[45] Tang S P, Wu W F, Fu Z H, Zou S, Liu Y C, Zhao H H, Kirk S R, Yin D L. ChemCatChem, 2015, 7:2637.
[46] Lu H Y, Ren W Z, Liu P F, Qi S X, Wang W H, Feng Y M, Sun F X, Wang Y W. Appl. Catal. A-Gen., 2012, 441:136.
[47] Maksimchuk N V, Kovalenko K A, Fedin V P, Kholdeeva O A. Chem. Commun., 2012, 48:6812.
[48] Long J L, Wang L M, Gao X F, Bai C H, Jiang H F, Li Y W. Chem. Commun., 2012, 48:12109.
[49] Silva A R, Mourao T, Rocha J. Catal. Today, 2013, 203:81.
[50] Rana S, Jonnalagadda S B. Chemistryselect, 2017, 2:2277.
[51] Martins L M D R D, Carabineiro S A C, Wang J W, Rocha B G M, Maldonado-Hodar F J, Pombeiro A J L D. ChemCatChem, 2017, 9:1211.
[52] Liu X, Conte M, He Q, Knight D W, Murphy D M, Taylor S H, Whiston K, Kiely C J, Hutchings G J. Chem. -Eur. J., 2017, 23:11834.
[53] Xiao Y P, Liu J C, Lin Y T, Lin W J, Fang Y X. J. Alloys Compd., 2017, 698:170.
[54] Martins L M D R S, de Almeida M P, Carabineiro S A C, Figueiredo J L, Pombeiro A J L. ChemCatChem, 2013, 5:3847.
[55] Denicourt-Nowicki A, Lebedeva A, Bellini C, Roucoux A. ChemCatChem, 2016, 8:357.
[56] Yuan Y, Ji H B, Chen Y X, Han Y, Song X F, She Y B, Zhong R G. Org. Process Res. Dev., 2004, 8:418.
[57] Chen Y, She Y B, Xu J, Li Y. Front. Chem. Eng. China, 2007, 1:155.
[58] Li H, She Y B, Wang T. Front. Chem. Sci. Eng., 2012, 6:356.
[59] Wang T, She Y B, Fu H Y, Li H. Catal. Today, 2016, 264:185.
[60] Li H, She Y B, Fu H Y, Cao M J, Wang J, Wang T. Can. J. Chem., 2015, 93:696.
[61] Cao M J, She Y B, Fu H Y, Yu Y M, Li H, Wang T. Mol. Simulat., 2015, 41:262.
[62] Zhu X H, Chen Y Z, Zhang F W, Niu J R, Xie M, Ma J T. RSC Adv., 2014, 4:2509.
[63] Machado K, Mukhopadhyay S, Mishra G S. J. Mol. Catal. A-Chem., 2015, 400:139.
[64] Yuan X, Shan G F, Li L X, Wu J, Luo H A. Catal. Lett., 2015, 145:868.
[65] Mishra G S, Kumar A, Mukhopadhyay S, Tavares P B. Appl. Catal. A-Gen., 2010, 384:136.
[66] Tabor E, Poltowicz J, Pamin K, Basag S, Kubiak W. Polyhedron, 2016, 119:342.
[67] Huang G, Guo C C, Tang S S. J. Mol. Catal. A-Chem., 2007, 261:125.
[68] Fu B, Yu H C, Huang J W, Zhao P, Liu J, Ji L N. J. Mol. Catal. A-Chem., 2009, 298:74.
[69] Huang G, Liu S Y, Guo Y A, Wang A P, Luo J, Cai C C. Appl. Catal. A-Gen., 2009, 358:173.
[70] Huang G, Li T M, Liu S Y, Fan M G, Jiang Y X, Guo Y A. Appl. Catal. A-Gen., 2009, 371:161.
[71] Huang G, Luo Z C, Hu Y D, Guo Y A, Jiang Y X, Wei S J. Chem. Eng. J., 2012, 195:165.
[72] Fan M G, Luo Z C, Huang G, Xiang F, Guo Y A, Zhou H. J. Exp. Nanosci., 2013, 8:640.
[73] Huang G, Shen L, Luo Z C, Hu Y D, Guo Y A, Wei S J. Catal. Commun., 2013, 32:108.
[74] Huang G, Wang P, Shen L, Wei Y X, Zeng K, Wei S J. Mater. Sci. Eng. C-Mater., 2015, 49:844.
[75] Xie Y J, Zhang F Y, Liu P L, Hao F, Luo H A. J. Mol. Catal. A-Chem., 2014, 386:95.
[76] Liu Y M, Tsunoyama H, Akita T, Xie S H, Tsukuda T. ACS Catal., 2011, 1:2.
[77] Gui Z Y, Cao W R, Chen L F, Qi Z W. Catal. Commun., 2015, 64:58.
[78] Chen L F, Zhou Y Y, Gui Z Y, Cheng H Y, Qi Z W. J. Mater. Sci., 2017, 52:7186.
[79] Yang X X, Li Y H, Yu H, Gui X C, Wang H J, Huang H Y, Peng F. Aust. J. Chem., 2016, 69:689.
[80] Wang L B, Zhao S T, Liu C X, Li C, Li X, Li H L, Wang Y C, Ma C, Li Z Y, Zeng J. Nano Lett., 2015, 15:2875.
[81] Huang C L, Zhang H Y, Sun Z Y, Liu Z M. Sci. China Chem., 2010, 53:1502.
[82] Qadir M I, Scholten J D, Dupont J. J. Mol. Catal. A-Chem., 2014, 383:225.
[83] Wu M Z, Zhan W C, Guo Y, Wang Y S, Guo Y L, Gong X Q, Wang L, Lu G Z. Chinese J. Catal., 2016, 37:184.
[84] Wu M Z, Zhan W C, Guo Y L, Guo Y, Wang Y S, Wang L, Lu G Z. Appl. Catal. A-Gen., 2016, 523:97.
[85] Unnarkat A P, Sridhar T, Wang H T, Mahajani S, Suresh A K. AIChE J., 2016, 62:4384.
[86] Xiao Z, Zhan W C, Guo Y, Guo Y L, Gong X Q, Lu G Z. Chinese J. Catal., 2016, 37:273.
[87] Fu Y, Zhan W C, Guo Y L, Wang Y Q, Liu X H, Guo Y, Wang Y S, Lu G Z. Micropor. Mesopor. Mater., 2015, 214:101.
[88] Li J, Li X, Shi Y, Mao D S, Lu G Z. Catal. Lett., 2010, 137:180.
[89] Zhou L, Xu J, Chen C, Wang F, Li X. J. Porous. Mater., 2008, 15:7.
[90] Zou G Q, Zhong W Z, Xu Q, Xiao J F, Liu C, Li Y Q, Mao L Q, Kirk S, Yin D L. Catal. Commun., 2015, 58:46.
[91] Yu H, Peng F, Tan J, Hu X W, Wang H J, Yang J A, Zheng W X. Angew. Chem. Int. Ed., 2011, 50:3978.
[92] Chen K, Chai Z G, Li C, Shi L R, Liu M X, Xie Q, Zhang Y F, Xu D S, Manivannan A, Liu Z F. ACS Nano, 2016, 10:3665.
[93] Wang X, Li Y W. J. Mater. Chem. A, 2016, 4:5247.
[94] Li X H, Chen J S, Wang X C, Sun J H, Antonietti M. J. Am. Chem. Soc., 2011, 133:8074.
[95] Yang X X, Wang H J, Li J, Zheng W X, Xiang R, Tang Z K, Yu H, Peng F. Chem. -Eur. J., 2013, 19:9818.
[96] Shiraishi Y, Sugano Y, Ichikawa S, Hirai T. Catal. Sci. Technol., 2012, 2:400.
[97] Ide Y, Kawamoto N, Bando Y, Hattori H, Sadakane M, Sano T. Chem. Commun., 2013, 49:3652.
[98] Yang D X, Wu T B, Chen C J, Guo W W, Liu H Z, Han B X. Green Chem., 2017, 19:311.
[99] Zhong W Z, Qiao T, Dai J, Mao L Q, Xu Q, Zou G Q, Liu X X, Yin D L, Zhao F P. J. Catal., 2015, 330:208.
[100] Shiraishi Y, Shiota S, Hirakawa H, Tanaka S, Ichikawa S, Hirai T. ACS Catal., 2017, 7:293.
[101] Zhang Y L, Hu L L, Zhu C, Liu J, Huang H, Liu Y, Kang Z H. Catal. Sci. Technol., 2016, 6:7252.
[102] Hayashi Y, Komiya N, Suzuki K, Murahashi S I. Tetrahedron Lett., 2013, 54:2706.
[103] Guha S K, Obora Y, Ishihara D, Matsubara H, Ryu I, Ishii Y. Adv. Synth. Catal., 2008, 350:1323.
[104] Sadiq M, Ali M, Iqbal R, Saeed K, Khan A, Umar M N, Rashid H U. J. Chem. Sci., 2015, 127:1167.
[105] Szymańska A, Nitek W, Oszajca M, ?asocha W, Pamin K, Po?towicz J. Catal. Lett., 2016, 146:998.
[1] Yue Yang, Ke Xu, Xuelu Ma. Catalytic Mechanism of Oxygen Vacancy Defects in Metal Oxides [J]. Progress in Chemistry, 2023, 35(4): 543-559.
[2] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[3] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[4] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[5] Yuexiang Zhu, Weiyue Zhao, Chaozhong Li, Shijun Liao. Pt-Based Intermetallic Compounds and Their Applications in Cathodic Oxygen Reduction Reaction of Proton Exchange Membrane Fuel Cell [J]. Progress in Chemistry, 2022, 34(6): 1337-1347.
[6] Fei Wu, Wei Ren, Cheng Cheng, Yan Wang, Heng Lin, Hui Zhang. Biochar-Based Advanced Oxidation Processes for the Degradation of Organic Contaminants in Water [J]. Progress in Chemistry, 2022, 34(4): 992-1010.
[7] Hao Sun, Chaopeng Wang, Jun Yin, Jian Zhu. Fabrication of Electrocatalytic Electrodes for Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 519-532.
[8] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[9] Hongyu Chu, Tianyu Wang, Chong-Chen Wang. Advanced Oxidation Processes (AOPs) for Bacteria Removal over MOFs-Based Materials [J]. Progress in Chemistry, 2022, 34(12): 2700-2714.
[10] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[11] Chenyang Qi, Jing Tu. Antibiotic-Free Nanomaterial-Based Antibacterial Agents:Current Status, Challenges and Perspectives [J]. Progress in Chemistry, 2022, 34(11): 2540-2560.
[12] Lingxiang Guo, Juping Li, Zhiyang Liu, Quan Li. Photosensitizers with Aggregation-Induced Emission for Mitochondrion-Targeting Photodynamic Therapy [J]. Progress in Chemistry, 2022, 34(11): 2489-2502.
[13] Meng Pengfei, Zhang Xiaorong, Liao Shijun, Deng Yijie. Enhancing the Performance of Atomically Dispersed Carbon-Based Catalysts Through Metallic/Nonmetallic Elements Co-Doping Towards Oxygen Reduction [J]. Progress in Chemistry, 2022, 34(10): 2190-2201.
[14] Yuan Su, Keming Ji, Jiayao Xun, Liang Zhao, Kan Zhang, Ping Liu. Catalysts for Catalytic Oxidation of Formaldehyde and Reaction Mechanism [J]. Progress in Chemistry, 2021, 33(9): 1560-1570.
[15] Ming Ge, Zheng Hu, Quanbao He. Application of Spinel Ferrite-Based Advanced Oxidation Processes in Organic Wastewater Treatment [J]. Progress in Chemistry, 2021, 33(9): 1648-1664.