中文
Announcement
More
Progress in Chemistry 2018, Vol. 30 Issue (1): 87-100 DOI: 10.7536/PC170816 Previous Articles   Next Articles

• Review •

Design and Applications of Multifunctional Super-Wetting Materials

Xiaoli Zhan, Biyu Jin, Qinghua Zhang*, Fengqiu Chen   

  1. Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21476195, 21576236, 21676248, 21776249).
PDF ( 1951 ) Cited
Export

EndNote

Ris

BibTeX

Biomimetic super-wetting materials refer to a kind of materials which are similar to organism interfaces with special wettability in nature. In recent twenty years, a series of biomimetic super-wetting materials have been designed by researchers contributed to massive researches which are imitating organism in nature. These materials are demonstrated to possess applications in numerous application fields such as national defense, military project, aerospace, construction industry, agriculture, medical and marine antifouling. More importantly, plentiful construction mechanisms and systematic principles of biomimetic super-wetting materials have been revealed and presented by researchers which significantly promote the development of them. In this review, basic theories and influence factors of surface wetting phenomena of solid surfaces are introduced firstly. Secondly, several surfaces with different wettability represented by mimicking lotus leaf, fish scale, desert beetles and nepenthes pitcher plant materials are described from the view of biomimic. Furthermore, the bionic design principles, relationship between structure and properties and the current challenges of these materials are summarized. In addition, the recent developments of biomimetic super-wetting materials which are capable of meeting needs in anti-fouling, anti-bacterial, anti-fogging, anti-frosting, anti-icing and oil-water separation, etc. are reviewed. Finally, the prospective tendency of biomimetic super-wetting materials is proposed based on the challenges.
Contents
1 Introduction
2 Surface wetting phenomena and influencing factors
3 Different biomimetic super-wetting surfaces and preparation
3.1 Superhydrophobic
3.2 Superhydrophilic
3.3 Amphiphilic
3.4 SLIPS
4 Applications of super-wetting materials
4.1 Anti-fouling and anti-bacterial
4.2 Anti-fogging, anti-frosting and anti-icing
4.3 Oil-water separation
4.4 Others
5 Conclusion

CLC Number: 

[1] 王鹏伟(Wang P W), 刘明杰(Liu M J), 江雷(Jiang L). 物理学报(Acta Physica Sinica), 2016, 65:61.
[2] Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D. Advanced Materials, 2002, 14:1857.
[3] Liu M, Wang S, Wei Z, Song Y, Jiang L. Advanced Materials, 2009, 21:665.
[4] Parker A R, Lawrence C R. Nature, 2001, 414:33.
[5] Wong T S, Kang S H, Tang S K, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477:443.
[6] Su B, Guo W, Jiang L. Small, 2015, 11:1072.
[7] 韦存茜(Wei C Q). 浙江大学硕士毕业论文(Master Dissertation of Zhejiang University), 2017.
[8] 付昱晨(Fu Y C). 浙江大学硕士毕业论文(Master Dissertation of Zhejiang University), 2017.
[9] Su B, Tian Y, Jiang L. Journal of the American Chemical Society, 2016, 138:1727.
[10] Samaha M, Gad-El-Hak M. Polymers, 2014, 6:1266.
[11] Lejars M, Margaillan A, Bressy C. Chemical Reviews, 2012, 112:4347.
[12] 天津大学物理化学教研室(Tianjin University Physical Chemistry Teaching and Research Office)编,王正烈(Wang Z L), 周亚平(Zhou Y P), 李松林(Li S L), 刘俊吉(Liu J J)修订. 物理化学下册第四版(Physical Chemistry(Forth Edition)). 北京:高等教育出版社(Beijing:Higher Education Press), 2001. 12.
[13] Young T. Philosophical Transactions of the Royal Society of London, 1805, 95:65.
[14] Tian Y, Jiang L. Nature Materials, 2013, 12:291.
[15] Vogler E A. Advances in Colloid and Interface Science, 1998, 74:69.
[16] Wenzel R N. Industrial and Engineering Chemistry, 1936, 28:988.
[17] Cassie A, Baxter S. Transactions of the Faraday Society, 1944, 40:546.
[18] Bico J, Thiele U, Quere D. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 206:41.
[19] Marmur A. Langmuir, 2004, 20:3517.
[20] Rios P F, Dodiuk H, Kenig S, McCarthy S, Dotan A. Journal of Adhesion Science and Technology, 2006, 20:563.
[21] 阎映弟(Yan Y D). 浙江大学硕士毕业论文(Master Dissertation of Zhejiang University), 2014.
[22] Verho T, Korhonen J T, Sainiemi L, Jokinen V, Bower C, Franze K, Franssila S, Andrew P, Ikkala O, Ras R H A. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109:10210.
[23] Yu S, Guo Z, Liu W. Chemical Communication, 2015, 51:1775.
[24] Lv J, Song Y, Jiang L, Wang J. ACS Nano, 2014, 8:3152.
[25] Xue C, Guo X, Zhang M, Ma J, Jia S. Journal of Materials Chemistry A, 2015, 3:21797.
[26] Wang Y, Shi Y, Pan L, Yang M, Peng L, Zong S, Shi Y, Yu G. Nano Letters, 2014, 14:4803.
[27] Li X, Reinhoudt D, Crego-Calama M. Chemical Society Reviews, 2007, 36:1350.
[28] Gao X, Jiang L. Nature, 2004, 432:36.
[29] Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24:4114.
[30] Gao X, Yan X, Yao X, Xu L, Zhang K, Zhang J, Yang B, Jiang L. Advanced Materials, 2007, 19:2213.
[31] Jin M, Feng X, Feng L, Sun T, Li T, Jiang L. Advanced Materials, 2005, 17:1977.
[32] Zheng Y, Gao X, Jiang L. Soft Matter, 2007, 3:178.
[33] Yang S, Ju J, Qiu Y, He Y, Wang X, Dou S, Liu K, Jiang L. Small, 2014, 10:294.
[34] Wang S, Liu K, Yao X, Jiang L. Chemical Reviews, 2015, 115:8230.
[35] Liu Y, Chen X, Xin J H. Journal of Materials Chemistry, 2009, 19:5602.
[36] Mazumder S, Falkinham J R, Dietrich A M, Puri I K. Biofouling, 2010, 26:333.
[37] Fujishima A, Zhang X, Tryk D A. Surface Science Reports, 2008, 63:515.
[38] Su B, Wang S, Song Y, Jiang L. Soft Matter, 2011, 7:5144.
[39] 杨卧龙(Yang W L), 纪献兵(Ji X B), 徐进良(Xu J L). 化学进展(Progress in Chemistry), 2016, 28:763.
[40] Yang H C, Liao K J, Huang H, Wu Q Y, Wan L S, Xu Z K. Journal of Materials Chemistry A, 2014, 2:10225.
[41] Li J, Yan L, Li H, Li W, Zha F, Lei Z. Journal of Materials Chemistry A, 2015, 3:14698.
[42] Zhou C, Cheng J, Hou K, Zhao A, Pi P, Wen X, Xu S. Chemical Engineering Journal, 2016, 301:249.
[43] Gao X, Xu L P, Xue Z, Feng L, Peng J, Wen Y, Wang S, Zhang X. Advanced Materials, 2014, 26:1771.
[44] Wang B, Zhang Y, Liang W, Wang G, Guo Z, Liu W. Journal of Materials Chemistry A, 2014, 2:7845.
[45] Thickett S C, Neto C, Harris A T. Advanced Materials, 2011, 23:3718.
[46] Rgaard T N, Dacke M. Frontiers in Zoology, 2010, 7:23.
[47] Choo S, Choi H J, Lee H. Applied Surface Science, 2015, 324:563.
[48] Ju J, Xiao K, Yao X, Bai H, Jiang L. Advanced Materials, 2013, 25:5937.
[49] 张广法(Zhang G F). 浙江大学博士毕业论文(Doctoral Dissertation of Zhejiang University), 2016.
[50] Howarter J A, Youngblood J P. Journal of Colloid and Interface Science, 2009, 329:127.
[51] Zhu X Y, Loo H E, Bai R B. Journal of Membrane Science, 2013, 436:47.
[52] Zhao X T, Chen W J, Su Y L, Zhu W, Peng J M, Jiang Z Y, Kong L, Li Y F, Liu J Z. Journal of Membrane Science, 2013, 441:93.
[53] Lin N, Yang H, Chang Y, Tung K, Chen W, Cheng H, Hsiao S, Aimar P, Yamamoto K, Lai J. Langmuir, 2012, 29:10183.
[54] Zhu L, Xu L, Zhu B, Feng Y, Xu Y. Journal of Membrane Science, 2007, 294:196.
[55] Vogel N, Belisle R A, Hatton B, Wong T S, Aizenberg J. Nature communication, 2013, 4:2167.
[56] Yao X, Dunn S S, Kim P, Duffy M, Alvarenga J, Aizenberg J. Angewandte Chemie International Edition, 2014, 53:4418.
[57] Kim P, Wong T S, Alvarenga J, Kreder M J, Adornomartinez W E, Aizenberg J. ACS Nano, 2012, 6:6569.
[58] Manabe K, Kyung K, Shiratori S. ACS Applied Materials & Interfaces, 2015, 7:4763.
[59] Doll K, Fadeeva E, Schaeske J, Ehmke T, Winkel A, Heisterkamp A, Chichkov B N, Stiesch M, Stumpp N S. ACS Applied Materials & Interfaces, 2017, 9:9359.
[60] Shillingford C, Maccallum N, Wong T S, Kim P, Aizenberg J. Nanotechnology, 2014, 25:014019.
[61] Sunny S, Vogel N, Howell C, Vu T L, Aizenberg J. Advanced Functional Materials, 2014, 24:6658.
[62] Miranda D F, Urata C, Masheder B, Dunderdale G J, Yagihashi M. APL Materials, 2014, 2(5):056108.
[63] Smith J, Dhiman R, Anand S, Reza-Garduno E, Cohen R E, McKinley G H, Varanasi K K. Soft Matter, 2013, 9:1772.
[64] Urata C, Dunderdale G J, England M W, Hozumi A. Journal of Materials Chemistry A, 2015, 3:12626.
[65] Zhu L, Xue J, Wang Y, Chen Q, Ding J, Wang Q. ACS Applied Materials & Interfaces, 2013, 5:4053.
[66] Howell C, Vu T L, Lin J J, Kolle S, Juthani N, Watson E, Weaver J C, Alvarenga J, Aizenberg J. ACS Applied Materials & Interfaces, 2014, 6:13299.
[67] 韦存茜(Wei C Q), 严杰(Yan J), 唐浩(Tang H), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q). 化学进展(Progress in Chemistry), 2016, 28:9.
[68] Solomon B R, Khalil K S, Varanasi K K. Langmuir, 2014, 30:10970.
[69] Eifert A, Paulssen D, Varanakkottu S N, Baier T, Hardt S. Advanced Materials Interfaces, 2014, 1:1300138.
[70] Smith J D, Dhiman R, Anand S, Reza-Garduno E, Cohen R T E, Mckinley G H, Varanasi K K. Soft Mater, 2013, 9:1772.
[71] Lee C, Kim H, Nam Y. Langmuir, 2014, 30:8400.
[72] Carlson A, Kim P, Amberg G, Stone H A. Europhysics Letters, 2013, 104:34008.
[73] Zhang J, Wang A, Seeger S. Advanced Functional Materials, 2014, 24:1074.
[74] Manna U, Lynn D M. Advanced Materials, 2015, 27:3007.
[75] Charpentier T V J, Neville A, Baudin S, Smith M J, Euvrard M, Bell A, Wang C, Barker R. Journal of Colloid and Interface Science, 2015, 444:81.
[76] Wang Q, Zhang Q, Zhan X, Chen F. Journal of Polymer Science Part A-Polymer Chemistry, 2010, 48:2584.
[77] Zhang Q, Wang Q, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2014, 53:8026.
[78] 王琼燕(Wang Q Y). 浙江大学博士毕业论文(Doctoral Dissertation of Zhejiang University), 2010.
[79] Zhang Q, Wang Q, Jiang J, Zhan X, Chen F. Langmuir, 2015, 31:4752.
[80] Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. ACS Applied Materials & Interfaces, 2016, 8:10513.
[81] Qian T, Wang J, Cheng T, Zhan X, Zhang Q, Chen F. Journal of Polymer Science Part A-Polymer Chemistry, 2016, 54(13):2040.
[82] 钱涛(Qian T), 汪涓涓(Wang J J), 张庆华(Zhang Q H), 詹晓力(Zhan X L), 陈丰秋(Chen F Q). 高分子学报(Acta Polymerica Sinica), 2016, 7:910.
[83] Wei C, Tang Y, Zhang G, Zhang Q, Zhan X, Chen F. RSC Advances, 2016, 6:74340.
[84] Fu Y, Jiang J, Zhang Q, Zhan X, Chen F. Journal of Materials Chemistry A, 2017, 5:275.
[85] Wei C, Zhang G, Zhang Q, Zhan X, Chen F. ACS Applied Materials & Interfaces, 2016, 8:34810.
[86] Zhang Q, Liu H, Zhan X, Chen F, Yan J, Tang H. RSC Advances, 2015, 5:77508.
[87] Zhang Q, Liu H, Chen X, Zhan X, Chen F. Journal of Applied Polymer Science, 2015, 132:41725.
[88] Chen X, Zhang G, Zhang Q, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2015, 54:3813.
[89] Zhan X, Zhang G, Chen X, He R, Zhang Q, Chen F. Industrial & Engineering Chemistry Research, 2015, 54:11312.
[90] Gao F, Zhang G, Zhang Q, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2015, 54:8789.
[91] Zhang Q, Jiang J, Gao F, Zhang G, Zhan X, Chen F. Chemical Engineering Journal, 2017, 321:412.
[92] Mishchenko L, Hatton B, Bahadur V, Taylor J A, Krupenkin T, Aizenberg J. ACS Nano, 2010, 4:7699.
[93] Cao L, Jones A K, Sikka V K, Wu J, Gao D. Langmuir, 2009, 25:12444.
[94] Jung S, Dorrestijn M, Raps D, Das A, Megaridis C M, Poulikakos D. Langmuir, 2011, 27:3059.
[95] Wilson P W, Lu W, Xu H, Kim P, Kreder M J, Alvarenga J, Aizenberg J. Physical Chemistry Chemistry Physical, 2013, 15:581.
[96] Stone H A. ACS Nano, 2012, 6:6536.
[97] Chen L, Geissler A, Bonaccurso E, Zhang K. ACS Applied Materials & Interfaces, 2014, 6:6969.
[98] Manabe K, Nishizawa S, Kyung K, Shiratori S. ACS Applied Materials & Interfaces, 2014, 6:13985.
[99] Wong T, Kang S H, Tang S K Y, Smythe E J, Hatton B D, Grinthal A, Aizenberg J. Nature, 2011, 477:443.
[100] Subramanyam S B, Rykaczewski K, Varanasi K K. Langmuir, 2013, 29:13414.
[101] Zhan X, Yan Y, Zhang Q, Zhan X, Chen F. Journal of Materials Chemistry A, 2014, 2:9390.
[102] Zhang Q, Jin B, Wang B, Zhan X, Chen F. Industrial & Engineering Chemistry Research, 2017, 56:2754.
[103] Wang B, Qian T, Zhang Q, Zhan X, Chen F. Surface and Coatings Technology, 2016, 304:31.
[104] Tang Y, Zhang Q, Zhan X, Chen F. Soft Matter, 2015, 11:454.
[105] Cheng T, He R, Zhang Q, Zhan X, Chen F. Journal of Materials Chemistry A, 2015, 3:21637.
[106] Elsharkawy M, Tortorella D, Kapatral S,Megaridis C M. Langmuir, 2016, 32:4278.
[107] Fu Y, Jin B, Zhang Q, Zhan X, Chen F. ACS Applied Materials & Interfaces, 2017, 9:30161.
[108] Zhang G, Gao F, Zhang Q, Zhan X, Chen F. RSC Advances, 2016, 6:7532.
[109] Zhang G, Jiang J, Zhang Q, Gao F, Zhan X, Chen F. Langmuir, 2016, 32:1380.
[110] Zhang G, Jiang J, Zhang Q, Zhan X, Chen F. AIChE Journal, 2017, 63:739.
[111] Zheng Y, Bai H, Huang Z, Tian X, Nie F Q, Zhao Y, Zhai J, Jiang L. Nature, 2010, 463:640.
[112] Chen Y, Zheng Y. Nanoscale, 2014, 6:7703.
[113] Bai H, Sun R, Ju J, Yao X, Zheng Y, Liang L. Small, 2011, 7:3429.
[114] Feng S, Hou Y, Xue Y, Gao L, Jiang L, Zheng Y. Soft Matter, 2013, 9:9294.
[115] Ju J, Bai H, Zheng Y, Zhao T, Fang R, Jiang L. Nature Communication, 2012, 3:1247.
[116] Cao M, Ju J, Li K, Dou S, Liu K, Jiang L. Advanced Functional Materials, 2014, 24:3235.
[117] Li K, Ju J, Xue Z, Ma J, Feng L, Gao S, Jiang L. Nature Communication, 2013, 4:2276.
[118] Chen H, Zhang P, Zhang L, Liu H, Jiang Y, Zhang D, Han Z, Jiang L. Nature, 2016, 532:85.
[119] Chen X, Wu Y, Su B, Wang J, Song Y, Jiang L. Advanced Materials, 2012, 24:5884.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Yixue Xu, Shishi Li, Xiaoshuang Ma, Xiaojin Liu, Jianjun Ding, Yuqiao Wang. Surface/Interface Modulation Enhanced Photogenerated Carrier Separation and Transfer of Bismuth-Based Catalysts [J]. Progress in Chemistry, 2023, 35(4): 509-518.
[3] Jing Wang, Haodi Yu, Junkun Wang, Ling Yuan, Lin Ren, Qingyu Gao. Helical Motion of Active Artificial Swimmers [J]. Progress in Chemistry, 2023, 35(2): 206-218.
[4] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[5] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[6] Xiaoguang Li, Xianglong Pang. Liquid Plasticines: Attributive Characters, Preparation Strategies and Application Explorations [J]. Progress in Chemistry, 2022, 34(8): 1760-1771.
[7] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[8] Shuaiwei Peng, Zhuofu Tang, Bing Lei, Zhiyuan Feng, Honglei Guo, Guozhe Meng. Design and Application of Bionic Surface for Directional Liquid Transportation [J]. Progress in Chemistry, 2022, 34(6): 1321-1336.
[9] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[10] Xumin Wang, Shuping Li, Renjie He, Chuang Yu, Jia Xie, Shijie Cheng. Quasi-Solid-State Conversion Mechanism for Sulfur Cathodes [J]. Progress in Chemistry, 2022, 34(4): 909-925.
[11] Minglong Lu, Xiaoyun Zhang, Fan Yang, Lian Wang, Yuqiao Wang. Surface/Interface Modulation in Oxygen Evolution Reaction [J]. Progress in Chemistry, 2022, 34(3): 547-556.
[12] Bolin Zhang, Shengyang Zhang, Shengen Zhang. The Use of Rare Earths in Catalysts for Selective Catalytic Reduction of NOx [J]. Progress in Chemistry, 2022, 34(2): 301-318.
[13] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[14] Qian Peng, Jingjing Zhang, Xinyue Fang, Jie Ni, Chunyuan Song. Surface-Enhanced Raman Spectroscopy on Detection of Myocardial Injury-Related Biomarkers [J]. Progress in Chemistry, 2022, 34(12): 2573-2587.
[15] Jinhuo Gao, Jiafeng Ruan, Yuepeng Pang, Hao Sun, Junhe Yang, Shiyou Zheng. High Temperature Properties of LiNi0.5Mn1.5O4 as Cathode Materials for High Voltage Lithium-Ion Batteries [J]. Progress in Chemistry, 2021, 33(8): 1390-1403.