中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (10): 1159-1172 DOI: 10.7536/PC170542 Previous Articles   Next Articles

• Review •

The Preparation and Biomedical Applications of Encoded Microcarriers

Huan Wang1, Luoran Shang1,2, Xiaoxiao Gu1, Fei Rong1,3, Yuanjin Zhao1*   

  1. 1. State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210018, China;
    2. School of Engineering and Applied Sciences, Harvard University, Cambridge 02138, United States;
    3. Suzhou Key Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Suzhou 215123, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.21473029,51522302),the NSAF Foundation of China (No. U1530260),and the Scientific Research Foundation of Graduate School of Southeast University.
PDF ( 516 ) Cited
Export

EndNote

Ris

BibTeX

High-throughput assays plays an important role in many fields, such as bioassays, drug delivery, materials evaluation, anti-counterfeiting, etc. Multiple assays is a kind of reliable method to realize these applications. One promising strategy for multiple assays is encoded microcarriers. Encoded microcarriers are microcarriers encoded by different encoding information, and the encoding information are generally one or a combination of several strategies such as shape and optical encoding. As the encoding information of each microcarrier is unique, the microcarriers could be used to distinguish biomolecules, cells and materials, and to realize multiple detection. In this review, the progress in encoded microcarriers are summarized, and the encoding strategies of the microcarriers are introduced. Their applications in multiple detection, cell culture and capture, drug evaluation, drug delivery and anti-counterfeiting are described in detail. Finally, the strengths and shortcomings, as well as the future development of the encoded microcarriers are discussed.
Contents
1 Introduction
2 Encoding strategies of microcarriers
2.1 Graphics encoding
2.2 Optical encoding
2.3 Others
3 Applications
3.1 Label multiplex bioassays
3.2 Label-free multiplex bioassays
3.3 Cell culture and capture
3.4 Drug evaluation
3.5 Drug delivery
3.6 Anti-counterfeiting
4 Conclusion and outlook

CLC Number: 

[1] Hu X B, Huang J, Zhang W X, Li M H, Tao C G, Li G T. Adv. Mater., 2008, 20:4074.
[2] Hu J J, Liu F, Ju H X. Angew. Chem. Int. Ed., 2016, 55:6667.
[3] Zhao Y J, Cheng Y, Shang L R, Wang J, Xie Z Y, Gu Z Z. Small, 2015, 11:151.
[4] Huang Y, Li F Y, Qin M, Jiang L, Song Y L. Angew. Chem. Int. Ed., 2013, 52:7296.
[5] Zhao Y J, Shang L R, Cheng Y, Gu Z Z. Acc. Chem. Res., 2014, 47:3632.
[6] Lin S, Wang W, Ju X J, Xie R, Liu Z, Yu H R, Zhang C, Chu L Y. Proc. Natl. Acad. Sci. U.S.A., 2016, 113:2023.
[7] Zhao Y J, Xie Z Y, Gu H C, Zhu C, Gu Z Z. Chem. Soc. Rev., 2012, 41:3297.
[8] 桂珍(Gui Z), 严枫(Yan F), 李金昌(Li J C),葛梦圆(Ge M Y), 鞠熀先(Ju H X). 化学进展(Progress in Chemistry), 2015, 27(10):1448.
[9] He L, Wang M S, Ge J P, Yin Y D. Acc. Chem. Res., 2012, 45:1431.
[10] Zhao Y J, Shum H C, Chen H S, Adams L L A, Gu Z Z, Weitz D A. J. Am. Chem. Soc., 2011, 133:8790.
[11] Huang Y, Li F Y, Ye C Q, Qin M, Ran W, Song Y L. Sci Rep., 2015, 5:9724.
[12] Leng Y K, Sun K, Chen X Y, Li W W. Chem. Soc. Rev., 2015, 44:5552.
[13] Hu D H, Han H Y, Zhou R, Dong F, Bei W C, Jia F, Chen H C. Analyst, 2008, 133:768.
[14] Anker J N, Hall W P, Lyandres O, Shah N C, Zhao J, Van Duyne R P. Nat. Mater., 2008, 7:442.
[15] Ge J P, Yin Y D. Angew. Chem. Int. Ed., 2011, 50:1492.
[16] 王欢(Wang H), 商珞然(Shang L R), 戎非(Rong F), 顾忠泽(Gu Z Z), 赵远锦(Zhao Y J). 化学通报(Chemistry Bulletin), 2017, 80(3):219.
[17] Medintz I L, Uyeda H T, Goldman E R, Mattoussi H. Nat. Mater., 2005, 4:435.
[18] Braeckmans K, De Smedt S C, Leblans M, Pauwels R, Demeester J. Nat. Rev. Drug. Discov., 2002, 1:447.
[19] Vignali D A A. J. Immunol. Methods, 2000, 243:243.
[20] Cederquist K B, Dean S L, Keating C D. Wiley Interdiscip. Rev.:Nanomed. Nanobiotechnol., 2010, 2:578.
[21] Kim J J, Bong K W, Reátegui E, Irimia D, Doyle P S. Nat. Mater., 2017, 16:139.
[22] Wilson R, Cossins A R, Spiller D G. Angew. Chem. Int. Ed., 2006, 45:6104.
[23] Vaino A R, Janda K D. Proc. Natl. Acad. Sci. U.S.A., 2000, 97:7692.
[24] Nicewarner-Peña S R, Freeman R G, Reiss B D, He L, Peña D J, Walton I D, Cromer R, Keating C D, Natan M J. Science, 2001, 294:137.
[25] Matthias S, Schilling J, Nielsch K, Müller F, Wehrspohn R B, Gösele U. Adv. Mater., 2002, 14:1618.
[26] Dejneka M J, Streltsov A, Pal S, Frutos A G, Powell C L, Yost K, Yuen P K, Müller U, Lahiri J. Proc. Natl. Acad. Sci. U.S.A., 2003, 100:389.
[27] Braeckmans K, De Smedt S C, Roelant C, Leblans M, Pauwels R, Demeester J. Nat. Mater., 2003, 2:169.
[28] Xiao X Y, Zhao C F, Potash H, Nova M P. Angew. Chem. Int. Ed., 1997, 36:780.
[29] Pregibon D C, Toner M, Doyle P S. Science, 2007, 315:1393.
[30] Lee H, Kim J, Kim H, Kim J, Kwon S. Nat. Mater., 2010, 9:745.
[31] Battersby B J, Bryant D, Meutermans W, Matthews D, Smythe M L, Trau M. J. Am. Chem. Soc., 2000, 122:2138.
[32] Grøndahl L, Battersby B J, Bryant D, Trau M J. Langmuir, 2000, 16:9709.
[33] Trau M, Battersby B J. Adv. Mater., 2001, 13:975.
[34] Li Y G, Cu Y T H, Luo D. Nat. Biotechnol., 2005, 23:885.
[35] Geiss G K, Bumgarner R E, Birditt B, Dahl T, Dowidar N, Dunaway D L, Fell H P, Ferree S, George R D, Grogan T, James J J, Maysuria M, Mitton J D, Oliveri P, Osborn J L, Peng T, Ratcliffe A L, Webster P J, Davidson E H, Hood L, Dimitrov K. Nat. Biotechnol., 2008, 26:317.
[36] https://www.illumina.com/technology/beadarray-technology.html.
[37] Gunderson K L, Kruglyak S, Graige M S, Garcia F, Kermani B G, Zhao C F, Che D P, Dickinson T, Wickham E, Bierle J, Doucet D, Milewski M, Yang R, Siegmund C, Haas J, Zhou L X, Oliphant A, Fan J B, Barnard S, Chee M S. Genome Res., 2004, 14:870.
[38] 赵冬梅(Zhao D M), 孙立国(Sun L G), 王彦杰(Wang H J), 杜宇虹(Du Y H), 汪成(Wang C). 化学进展(Progress in Chemistry), 2012, 24:1277.
[39] Chan W C W, Maxwell D J, Gao X H, Bailey R E, Han M Y, Nie S M. Curr. Opin. Biotechnol., 2002, 13:40.
[40] Han M Y, Gao X H, Su J Z, Nie S M. Nat. Biotechnol., 2001, 19:631.
[41] Gao X H, Cui Y Y, Levenson R M, Chung L W K, Nie S M. Nat. Biotechnol., 2004, 22:969.
[42] 赵兵(Zhao B), 祁宁(Qi N), 张克勤(Zhang K Q). 化学进展(Progress in Chemistry), 2016, 28:1615.
[43] 王瑜(Wang Y), 任舒悦(Ren S Y), 姜会聪(Jiang H C), 白家磊(Bai J L), 彭媛(Peng Y), 宁保安(Ning B A), 高志贤(Gao Z X). 分析化学(Chinese Journal of Analytical Chemistry), 2017, 45:35.
[44] Zhang F, Shi Q H, Zhang Y C, Shi Y F, Ding K L, Zhao D Y, Stucky G D. Adv. Mater., 2011, 23:3775.
[45] Zhang Y H, Zhang L X, Deng R R, Tian J, Zong Y, Jin D Y, Liu X G. J. Am. Chem. Soc., 2014, 136:4893.
[46] Page R H, Schaffers K I, Waide P A, Tassano J B, Payne S A, Krupke W F, Bischel W K. J. Opt. Soc. Am. B, 1998, 15:996.
[47] Yablonovitch E. Phys. Rev. Lett., 1987, 58:2059.
[48] John S. Phys. Rev. Lett., 1987, 58:2486.
[49] Hu X B, An Q, Li G T, Tao S Y, Liu J. Angew. Chem. Int. Ed., 2006, 45:8145.
[50] 李珩(Li H), 王京霞(Wang J X), 王荣明(Wang R M), 宋延林(Song Y L). 化学进展(Progress in Chemistry), 2011, 23:1060.
[51] Cunin F, Schmedake T A, Link J R, Li Y Y, Koh J, Bhatia S N, Sailor M J. Nat. Mater., 2002, 1:39.
[52] Li Y Y, Kollengode V S, Sailor M J. Adv. Mater., 2005, 17:1249.
[53] Zhao Y J, Xie Z Y, Gu H C, Jin L, Zhao X W, Wang B P, Gu Z Z. NPG Asia Mater., 2012, 4:e25.
[54] Gu H C, Rong F, Tang B C, Zhao Y J, Fu D G, Gu Z Z. Langmuir, 2013, 29:7576.
[55] Zhao X W, Cao Y, Ito F, Chen H H, Nagai K, Zhao Y H, Gu Z Z. Angew. Chem. Int. Ed., 2006, 45:6835.
[56] Xu Y S, Zhang X P, Luan C X, Wang H, Chen B A, Zhao Y J. Biosens. Bioelectron., 2017, 87:264.
[57] Zhao Y J, Zhao X W, Hu J, Li J, Xu W Y, Gu Z Z. Angew. Chem. Int. Ed., 2009, 48:7350.
[58] Wang H, Gu H C, Chen Z Y, Shang L R, Zhao Z, Gu Z Z, Zhao Y J. ACS Appl. Mater. Interfaces, 2017, 9:12914.
[59] Zhang B, Cheng Y, Wang H, Ye B F, Shang L R, Zhao Y J, Gu Z Z. Nanoscale, 2015, 7:10590.
[60] Scillian J J, McHugh T M, Busch M P, Tam M, Fulwyler M J, Chien D Y, G N Vyas. Blood, 1989, 73:2041.
[61] Fenniri Hicham, Ding L H, Ribbe A E, Zyrianov Y. J. Am. Chem. Soc., 2001, 123:8151.
[62] Service R F. Science, 1995, 270:577.
[63] Nicolaou K C, Xiao X Y, Parandoosh Z, Senyei A, Nova M P. Angew. Chem. Int. Ed., 1995, 34:2289.
[64] Mandecki W, Ardelt B, Coradetti T, Davidowitz H, Flint J A, Huang Z L, Kopacka W M, Lin X, Wang Z Y, Darzynkiewicz Z. Cytom. Part A, 2006, 69A:1097.
[65] Nam J M, Thaxton C S, Mirkin C A. Science, 2003, 301:1884.
[66] Liu Y X, Liu L, He Y H, Zhu L, Ma H. Anal. Chem., 2015, 87:5286.
[67] Zhao Y J, Zhao X W, Gu Z Z. Adv. Funct. Mater., 2010, 20:2970.
[68] Dunbar S A, Vander Zee C A, Oliver K G, Karem K L, Jacobson J W. J. Microbiol. Meth., 2003, 53:245.
[69] Dunbar S A. Clin. Chim. Acta, 2006, 363:71.
[70] Reslova N, Michna V, Kasny M, Mikel P, Kralik P. Front. Microbiol., DOI:10.3389/fmicb.2017.00055.
[71] Zhang D S Z, Jiang Y, Yang H, Zhu Y J, Zhang S J, Zhu Y, Wei D, Lin Y, Wang P P, Fu Q H, Xu H, Gu H C. Adv. Funct. Mater., 2016, 26:6146.
[72] Zhang Y, Dong C H, Su L, Wang H J, Gong X Q, Wang H Q, Liu J Q, Chang J. ACS Appl. Mater. Interfaces, 2016, 8:745.
[73] Lee H, Shapiro S J, Chapin S C, Doyle P S. Anal. Chem., 2016, 88:3075.
[74] Zhao Y J, Zhao X W, Pei X P, Hu J, Zhao W J, Chen B A, Gu Z Z. Anal. Chim. Acta, 2009, 633:103.
[75] Zhao Y J, Zhao X W, Sun C, Li J, Zhu R, Gu Z Z. Anal. Chem., 2008, 80:1598.
[76] Yang Z X, Chen B A, Wang H, Xia G H, Cheng J, Pei X P, Wang F, Bao W. Biosens. Bioelectron., 2013, 48:153.
[77] Homola J, Yee S S, Gauglitz G. Sens. Actuators, B, 1999, 54:3.
[78] Wu G H, Datar R H, Hansen K M, Thundat T, Cote R J, Majumdar A. Nat. Biotechnol., 2001, 19:856.
[79] 鲁娜(Lu N), 高安然(Gao A R), 戴鹏飞(Dai P F), 宋世平(Song S P), 樊春海(Fan C H), 王跃林(Wang Y L), 李铁(Li T). 科学通报(Chinese Science Bulletin), 2016, 61:442.
[80] 罗细亮(Luo X L), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 分析化学(Chinese Journal of Analytical Chemistry), 2004, 32:1395.
[81] Zhao Y J, Zhao X W, Hu J, Xu M, Zhao W J, Sun L J, Zhu C, Xu H, Gu Z Z. Adv. Mater., 2009, 21:569.
[82] Wang H, Xu Q H, Shang L R, Wang J, Rong F, Gu Z Z, Zhao Y J. Chem. Commun., 2016, 52:3296.
[83] Zhao Y J, Zhao X W, Tang B C, Xu W Y, Li J, Hu J, Gu Z Z. Adv. Funct. Mater., 2010, 20:976.
[84] Chen H Y, Lahann J. Langmuir, 2011, 27:34.
[85] Wheeldon I, Farhadi A, Bick A G, Jabbari E, Khademhosseini A. Nanotechnology, 2011, 22:212001.
[86] Pampaloni F, Reynaud E G, Stelzer E H K. Nat. Rev. Mol. Cell. Bio., 2007, 8:839.
[87] Van Wezel A L. Nature, 1967, 216:64.
[88] Lee J, Cuddihy M J, Kotov N A. Tissue Eng., Part B, 2008, 14:61.
[89] Liu W, Shang L R, Zheng F Y, Lu J, Qian J L, Zhao Y J, Gu Z Z. Small, 2014, 10:88.
[90] Zheng F Y, Cheng Y, Wang J, Lu J, Zhang B, Zhao Y J, Gu Z Z. Adv. Mater., 2014, 26:7333.
[91] Zhang B, Cai Y L, Shang L R, Wang H, Cheng Y, Rong F, Gu Z Z, Zhao Y J. Nanoscale, 2016, 8:3841.
[92] Shang L R, Fu F F, Cheng Y, Wang H, Liu Y X, Zhao Y J, Gu Z Z. J. Am. Chem. Soc., 2015, 137:15533.
[93] Shang L R, Cheng Y, Wang J, Yu Y R, Zhao Y J, Chen Y P, Gu Z Z. Lab Chip, 2016, 16:251.
[94] Zhang C, Zhao Z Q, Rahim N A A, van Noort D, Yu H. Lab Chip, 2009, 9:3185.
[95] Neu?il P, Giselbrecht S, Länge K, Huang T J, Manz A. Nat. Rev. Drug Discov., 2012, 11:620.
[96] 庄琪琛(Zhuang Q S), 宁芮之(Ning R Z), 麻远(Ma Y), 林金明(Lin J M). 分析化学(Chinese Journal of Analytical Chemistry), 2016, 44:522.
[97] Zheng F Y, Fu F F, Cheng Y, Wang C Y, Zhao Y J, Gu Z Z. Small, 2016, 12:2253.
[98] Fu F F, Shang L R, Zheng F Y, Chen Z Y, Wang H, Wang J, Gu Z Z, Zhao Y J. ACS Appl. Mater. Interfaces, 2016, 8:13840.
[99] Petros R A, DeSimone J M. Nat. Rev. Drug Discov., 2010, 9:615.
[100] Mitragotri S, Burke P A, Langer R. Nat. Rev. Drug Discov., 2014, 13:655.
[101] Kim S H, Shum H C, Kim J W, Cho J C, Weitz D A. J. Am. Chem. Soc., 2011, 133:15165.
[102] Fu F F, Wu Y L, Zhu J Y, Wen S H, Shen M W, Shi X Y. ACS Appl. Mater. Interfaces, 2014, 6:16416.
[103] Ekanem E E, Nabavi S A, Vladisavljevi? G T, Gu S. ACS Appl. Mater. Interfaces, 2015, 7:23132.
[104] Yu X, Cheng G, Zhou M D, Zheng S Y. Langmuir, 2015, 31:3982.
[105] Han H J, Valdepérez D, Jin Q, Yang B, Li Z H, Wu Y L, Pelaz B, Parak W J, Ji J. ACS Nano, 2017, 11:1281.
[106] Bai L, Xie Z Y, Wang W, Yuan C W, Zhao Y J, Mu Z D, Zhong Q F, Gu Z Z. ACS Nano, 2014, 8:11094.
[107] Liu Y, Lee Y H, Zhang Q, Cui Y, Ling X Y. J. Mater. Chem. C, 2016, 4:4312.
[108] Huang C B, Lucas B, Vervaet C, Braeckmans K, Van Calenbergh S, Karalic I, Vandewoestyne M, Deforce D, Demeester J, De Smedt S C. Adv. Mater., 2010, 22:2657.
[109] Han S, Bae H J, Kim J, Shin S, Choi S E, Lee S H, Kwon S, Park W. Adv. Mater., 2012, 24:5924.
[110] You M L, Lin M, Wang S R, Wang X M, Zhang G, Hong Y, Dong Y Q, Jin G R, Xu F. Nanoscale, 2016, 8:10096.
[111] Lee J, Bisso P W, Srinivas R L, Kim J J, Swiston A J, Doyle P S. Nat. Mater., 2014, 13:524.
[112] Li R M, Zhang Y T, Tan J, Wan J X, Guo J, Wang C C. ACS Appl. Mater. Interfaces, 2016, 8:9384.
[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[3] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[4] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[5] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[6] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[7] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[8] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[9] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[10] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[11] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[12] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[13] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[14] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[15] Peifeng Su, Hongxin Wu, Yongming Chen, Fei Peng. Micro/Nanomotors as Drug Delivery Agent [J]. Progress in Chemistry, 2019, 31(1): 63-69.