中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (7): 740-749 DOI: 10.7536/PC170507 Previous Articles   Next Articles

• Review •

Dynamic and Reversible Intelligent Systems Regulated by Chemical Oscillating Reactions

Bo Yan, Hongwei Zhou*, Pu Xie, Xilang Jin, Aijie Ma*, Weixing Chen   

  1. School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51603164),the Natural Science Basic Research Plan in Shaanxi Province of China (No.2016JQ5036),the President Foundation of Xi'an Technological University (No.XAGDXJJ16010) and the Young Talent Fund of University Association for Science and Technology in Shaanxi,China.
PDF ( 560 ) Cited
Export

EndNote

Ris

BibTeX

Dynamic and reversible interaction is one of important tools for constructing intelligent material systems with controllability and adjustability. However, most of the intelligent systems based on dynamic and reversible interactions only respond to "on/off" transition of external stimuli, including light, heat, solvent, pH, etc., instead of automatic regulation. The development of chemical oscillating reactions and self-oscillating polymer materials provides an important idea for the construction of self-regulated intelligent systems. We introduce dynamic and reversible intelligent systems (DRIS) regulated by chemical oscillating reactions, including autonomous aggregation/disaggregation nanoparticle systems, autonomous assembly/disassembly amphiphilic molecule systems, autonomous assembly/disassembly hydrogel systems, autonomous molecular shuttle systems and autonomous fluorescent oscillation systems, which are constructed base on dynamic and reversible interactions, such as dynamic covalent bonds, host-guest interactions, coordination interactions, ionic interactions and intermolecular interactions. Finally, we prospect the future investigation and development of DRIS regulated by chemical oscillating reactions.
Contents
1 Introduction
2 Chemical oscillating reactions
3 General construction mechanism for DRIS
4 DRIS based on different dynamic and reversible interactions
4.1 DRIS based on dynamic covalent bonds
4.2 DRIS based on host-guest interactions
4.3 DRIS based on coordination interactions
4.4 DRIS based on ionic interactions
4.5 DRIS based on intermolecular interactions
5 Conclusion and outlook

CLC Number: 

[1] Clayden J. Nat. Nano., 2017, DOI:10.1038/nnano.2017.19.
[2] Lehn J M. Chem. Soc. Rev., 2017, DOI:10.1039/C7CS00115K.
[3] Kolesnichenko I V, Anslyn E V. Chem. Soc. Rev., 2017, DOI:10.1039/C7CS00078B.
[4] Liu Y, Lehn J M, Hirsch A K H. Acc. Chem. Res., 2017, 50:376.
[5] Mondal M, Hirsch A K H. Chem. Soc. Rev., 2015, 44:2455.
[6] Jin Y H, Yu C, Denman R J, Zhang W. Chem. Soc. Rev., 2013, 42:6634.
[7] Grubbs R B. Nat. Mater., 2007, 6:553.
[8] Boal A K, Ilhan F, DeRouchey J E, Thurn-Albrecht T, Russell T P, Rotello V M. Nature, 2000, 404:746.
[9] Zhang X, Wang C. Chem. Soc. Rev., 2011, 40:94.
[10] Wang C, Wang Z, Zhang X. Acc. Chem. Res., 2012, 45:608.
[11] Harada A, Kobayashi R, Takashima Y, Hashidzume A, Yamaguchi H. Nat. Chem., 2011, 3:34.
[12] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Nature Communications, 2012, 3:831.
[13] Heinzmann C, Weder C, de Espinosa L M. Chem. Soc. Rev., 2016, 45:342.
[14] Yang L, Tan X, Wang Z, Zhang X. Chem. Rev., 2015, 115:7196.
[15] Burnworth M, Tang L, Kumpfer J R, Duncan A J, Beyer F L, Fiore G L, Rowan S J, Weder C. Nature, 2011, 472:334.
[16] Aida T, Meijer E W, Stupp S I. Science, 2012, 335:813.
[17] Fiore G L, Rowan S J, Weder C. Chem. Soc. Rev., 2013, 42:7278.
[18] Yang Y, Urban M W. Chem. Soc. Rev., 2013, 42:7446.
[19] Zhou H, Xue C, Weis P, Suzuki Y, Huang S, Koynov K, Auernhammer G K, Berger R, Butt H J, Wu S. Nat. Chem., 2017, 9:145.
[20] Colquhoun H M. Nat. Chem., 2012, 4:435.
[21] Cordier P, Tournilhac F, Soulie-Ziakovic C, Leibler L. Nature, 2008, 451:977.
[22] Chen Y, Kushner A M, Williams G A, Guan Z. Nat. Chem., 2012, 4:467.
[23] Zhou H, Zhang M, Cao J, Yan B, Yang W, Jin X, Ma A, Chen W, Ding X, Zhang G. Macromol. Mater. & Eng., 2016, 302:1600352.
[24] Zhao Q, Zou W, Luo Y, Xie T. Sci. Adv., 2016, 2:e1501297.
[25] Xie T. Nature, 2010, 464:267.
[26] Luo Y, Guo Y, Gao X, Li B G, Xie T. Adv. Mater., 2013, 25:743.
[27] Lendlein A, Jiang H, Junger O, Langer R. Nature, 2005, 434:879.
[28] Behl M, Razzaq M Y, Lendlein A. Adv. Mater., 2010, 22:3388.
[29] Habault D, Zhang H, Zhao Y. Chem. Soc. Rev., 2013, 42:7244.
[30] Joachim C, Gimzewski J K, Aviram A. Nature, 2000, 408:541.
[31] Brouwer A M, Frochot C, Gatti F G, Leigh D A, Mottier L C, Paolucci F, Roffia S, Wurpel G W H. Science, 2001, 291:2124.
[32] Kassem S, van Leeuwen T, Lubbe A S, Wilson M R, Feringa B L, Leigh D A. Chem. Soc. Rev., 2017, 46(9):2592.
[33] Petrov V, Ouyang Q, Swinney H L. Nature, 1997, 388:655.
[34] Petrov V, Gaspar V, Masere J, Showalter K. Nature, 1993, 361:240.
[35] Noyes R M, Field R J, Koros E. J. Am. Chem. Soc., 1972, 94:1394.
[36] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1976, 98:4345.
[37] Ivanovic A Z, Cupic Z D, Jankovic M M, Kolar-Anic L Z, Anic S R. Phys. Chem., 2008, 10:5848.
[38] Sharma K R, Noyes R M. J. Am. Chem. Soc., 1975, 97:202.
[39] Schmitz G. Phys. Chem., 2011, 13:7071.
[40] Kepper P D, Epstein I R. J. Am. Chem. Soc., 1982, 104:49.
[41] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104:38.
[42] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104:42.
[43] Furrow S D, Noyes R M. J. Am. Chem. Soc., 1982, 104:45.
[44] Poros E, Horvath V, Kurin-Csorgei K, Epstein I R, Orban M. J. Am. Chem. Soc., 2011, 133:7174.
[45] Pesek O, Schreiberova L, Schreiber I. Phys. Chem. Chem. Phys., 2011, 13:9849.
[46] Yoshida R, Uesusuki Y. Biomacromolecules, 2005, 6:2923.
[47] Yoshida R, Takahashi T, Yamaguchi T, Ichijo H. J. Am. Chem. Soc., 1996, 118:5134.
[48] Yoshida R. Adv. Mater., 2010, 22:3463.
[49] Yoshida R, Ichijo H, Hakuta T, Yamaguchi T. Macromol. Rapid Commun., 1995, 16:305.
[50] Yoshida R, Sakai T, Ito S, Yamaguchi T. J. Am. Chem. Soc., 2002, 124:8095.
[51] Hara Y, Sakai T, Maeda S, Hashimoto S, Yoshida R. J. Phys. Chem. B, 2005, 109:23316.
[52] Ueda M, Hara Y, Sakai T, Yoshida R, Takai M, Ito Y. J. Polym. Sci. Pt. B-Polym. Phys., 2007, 45:1578.
[53] Suzuki D, Sakai T, Yoshida R. Angew. Chem. Int. Ed., 2008, 47:917.
[54] Suzuki D, Taniguchi H, Yoshida R. J. Am. Chem. Soc., 2009, 131:12058.
[55] Ueki T, Shibayama M, Yoshida R. Chem. Commun., 2013, 49:6947.
[56] Tamate R, Ueki T, Shibayama M, Yoshida R. Angew. Chem. Int. Ed., 2014, 53:11248.
[57] Lagzi I, Kowalczyk B, Wang D W, Grzybowski B A. Angew. Chem. Int. Ed., 2010, 49:8616.
[58] 周宏伟(Zhou H W), 梁恩湘(Liang E X), 郑朝晖(Zheng Z H), 丁小斌(Ding X B), 彭宇行(Peng Y X). 化学进展(Prog. Chem.), 2011, 23:2368.
[59] Ren J, Zhang X Y, Gao J Z, Yang W. Cent. Eur. J. Chem., 2013, 11:1023.
[60] Homma K, Masuda T, Akimoto A M, Nagase K, Itoga K, Okano T, Yoshida R. Small, 2017, 13:170041.
[61] Zhou H W, Zheng Z H, Wang Q G, Xu G H, Li J, Ding X B. RSC Adv., 2015, 5:13555.
[62] Maeda T, Otsuka H, Takahara A. Prog. Polym. Sci., 2009, 34:581.
[63] Rowan S J, Cantrill S J, Cousins G R, Sanders J K, Stoddart J F. Angew. Chem. Int. Ed., 2002, 41:898.
[64] Meyer C D, Joiner C S, Stoddart J F. Chem. Soc. Rev., 2007, 36:1705.
[65] Bhat V T, Caniard A M, Luksch T, Brenk R, Campopiano D J, Greaney M F. Nature Chem., 2010, 2:490.
[66] Amamoto Y, Kamada J, Otsuka H, Takahara A, Matyjaszewski K. Angew. Chem., 2011, 123:1698.
[67] Postma A, Davis T P, Moad G, O'Shea M S. Macromolecules, 2005, 38:5371.
[68] Moad G, Chong Y K, Postma A, Rizzardo E, Thang S H. Polymer, 2005, 46:8458.
[69] Harrisson S. Macromolecules, 2009, 42:897.
[70] Xu G, Li J, Deng J, Yin L, Zheng Z, Ding X. RSC Adv., 2015, 5:106294.
[71] Xu G, Zhou H, Li J, Yin L, Zheng Z, Ding X. Polym. Chem., 2016, 7:3211.
[72] Liang E X, Zhou H W, Ding X B, Zheng Z H, Peng Y X. Chem. Commun., 2013, 49:5384.
[73] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. Langmuir, 2011, 27:13790.
[74] Zheng Y, Hashidzume A, Takashima Y, Yamaguchi H, Harada A. ACS Macro Letters, 2012, 1:1083.
[75] Kobayashi Y, Takashima Y, Hashidzume A, Yamaguchi H, Harada A. Sci. Rep., 2013, 3:142.
[76] Yang H, Yuan B, Zhang X, Scherman O A. Acc. Chem. Res., 2014, 47:2106.
[77] Schneider H J, Yatsimirsky A K. Chem. Soc. Rev., 2008, 37:263.
[78] Zhou Y, Wang D, Huang S, Auernhammer G, He Y, Butt H J, Wu S. Chem. Commun., 2015, 51:2725.
[79] 许国贺(Xu G H), 李杰(Li J), 邓瑾妮(Deng J N), 殷绿(Yin L), 郑朝晖(Zheng Z H), 丁小斌(Ding X B). 化学进展(Prog. Chem.), 2015, 27:1732.
[80] Stepanow S, Lingenfelder M, Dmitriev A, Spillmann H, Delvigne E, Lin N, Deng X, Cai C, Barth J V, Kern K. Nat. Mater., 2004, 3:229.
[81] Zhang M, Xu D, Yan X, Chen J, Dong S, Zheng B, Huang F. Angew. Chem., 2012, 124:7117.
[82] Wang D S, Wagner M, Butt H J, Wu S. Soft Matter, 2015, 11:7656.
[83] Crowley J D, Goldup S M, Lee A L, Leigh D A, McBurney R T. Chem. Soc. Rev., 2009, 38:1530.
[84] Buyukcakir O, Yasar F T, Bozdemir O A, Icli B, Akkaya E U. Org. Lett., 2013, 15:1012.
[85] Zhou H W, Wang Y R, Zheng Z H, Ding X B, Peng Y X. Chem. Commun., 2014, 50:6372.
[86] Hofmeier H, Schubert U S. Chem. Soc. Rev., 2004, 33:373.
[87] Schubert U S, Eschbaumer C. Angew. Chem. Int. Ed., 2002, 41:2892.
[88] Winter A, Hager M D, Newkome G R, Schubert U S. Adv. Mater., 2011, 23:5728.
[89] Norsten T B, Frankamp B L, Rotello V M. Nano Lett., 2002, 2:1345.
[90] Ueki T, Yoshida R. Phys. Chem. Chem. Phys., 2014, 16:10388.
[91] Lohmeijer B G G, Schubert U S. Angew. Chem. Int. Ed., 2002, 41:3825.
[92] Fustin C A, Guillet P, Schubert U S, Gohy J F. Adv. Mater., 2007, 19:1665.
[93] Delgado J, Zhang Y, Xu B, Epstein I R. J. Phys. Chem. A, 2011, 115:2208.
[94] Zhou H W, Yang Y, Xu G H, Chen W X, Zhang W Z, Wang Q Q, Zheng Z H, Ding X B. J. Polym. Sci. Pol. Chem., 2015, 53:2214.
[95] Ueno T, Bundo K, Akagi Y, Sakai T, Yoshida R. Soft Matter, 2010, 6:6072.
[96] Ueki T, Takasaki Y, Bundo K, Ueno T, Sakai T, Akagi Y, Yoshida R. Soft Matter, 2014, 10:1349.
[97] 周宏伟(Zhou H W), 丁小斌(Ding X B). 化学进展(Prog. Chem.), 2016, 28:111.
[98] Zhou H, Liang E, Ding X, Zheng Z, Peng Y. Chem. Commun., 2012, 48:10553.
[99] Zhou H W, Liang E X, Pan Y, Ding X B, Zheng Z H, Peng Y X. RSC Adv., 2013, 3:2182.
[100] Lin P, Ma S H, Wang X L, Zhou F. Adv. Mater., 2015, 27:2054.
[101] Wei Z, He J, Liang T, Oh H, Athas J, Tong Z, Wang C, Nie Z. Polym. Chem., 2013, 4:4601.
[102] Liang Y, Wu D, Feng X, Müllen K. Adv. Mater., 2009, 21:1679.
[103] Zhou H, Zhang M, Cao J, Yan B, Yang W, Jin X, Ma A, Chen W, Ding X, Zhang G, Luo C. Macromol. Mater. Eng., 2017, 302, 1600352.
[104] Zhang Y, Zhou N, Li N, Sun M G, Kim D, Fraden S, Epstein I R, Xu B. J. Am. Chem. Soc., 2014, 136:7341.
[105] Zhang Y, Zhou N, Akella S, Kuang Y, Kim D, Schwartz A, Bezpalko M, Foxman B M, Fraden S, Epstein I R, Xu B. Angew. Chem. Int. Ed., 2013, 52:11494.
[106] Smith M L, Slone C, Heitfeld K, Vaia R A. Adv. Funct. Mater., 2013, 23:2835.
[107] Nabika H, Oikawa T, Iwasaki K, Murakoshi K, Unoura K. J. Phys. Chem. C, 2012, 116:6153.
[108] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat. Commun., 2012, 3:603.
[109] Onoda M, Ueki T, Shibayama M, Yoshida R. Sci. Rep., 2015, 5:15792.
[110] Lagzi I, Wang D W, Kowalczyk B, Grzybowski B A. Langmuir, 2010, 26:13770.
[111] Ueki T, Onoda M, Tamate R, Shibayama M, Yoshida R. Chaos, 2015, 25:064605.
[112] Tamate R, Ueki T, Yoshida R. Adv. Mater., 2015, 27:837.
[113] Zhou H, Ding X, Zheng Z, Peng Y. Soft Matter, 2013, 9:4956.
[114] Yashin V V, Levitan S P, Balazs A C. Sci. Rep., 2015, 5:11577.
[115] Dayal P, Kuksenok O, Balazs A C. Macromolecules, 2014, 47:3231.
[116] Dayal P, Kuksenok O, Balazs A C. PNAS, 2013, 110:431.
[117] Yashin V V, Kuksenok O, Balazs A C. Prog. Polym. Sci., 2010, 35:155.
[118] Yashin V V, Balazs A C. Macromolecules, 2006, 39:2024.
[119] Yashin Victor V, Balazs Anna C. Science, 2006, 314:798.
[120] Yashin V V, Kuksenok O, Balazs A C. J. Phys. Chem. B, 2010, 114:6316.
[1] Xiangli Chen, Kaiqiang Liu, Yu Fang. Molecular Gels: From Structural Regulation to Functional Applications [J]. Progress in Chemistry, 2020, 32(7): 861-872.
[2] Yao-Hua Liu, Yu Liu. Photo-Controlled Supramolecular Assemblies Based on Azo Group [J]. Progress in Chemistry, 2019, 31(11): 1528-1539.
[3] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.
[4] Huang Wenzhong, Zhan Tianguang, Lin Feng, Zhao Xin. Recent Progress in the Construction and Regulation of Supramolecular Polymers Based on Host-Guest Interactions [J]. Progress in Chemistry, 2016, 28(2/3): 165-183.
[5] Huang Guobao, Jiang Wei. Dynamic Covalent Macrocycles Constructed via Organic Templates [J]. Progress in Chemistry, 2015, 27(6): 744-754.
[6] Peng Liao, Feng Anchao, Wang Hong, Zhang Huijuan, Yuan Jinying. Voltage-Responsive Systems Based on β-Cyclodextrin and Ferrocene [J]. Progress in Chemistry, 2013, 25(11): 1942-1950.
[7] Wan Pengbo, Hill Eric H., Zhang Xi. Interfacial Supramolecular Chemistry for Stimuli-Responsive Functional Surfaces [J]. Progress in Chemistry, 2012, 24(01): 1-7.
[8] Zhang Huacheng, Xin Feifei, Li Yueming, Hao Aiyou, An Wei, Sun Tao. Supramolecular Cyclodextrins Amphiphiles [J]. Progress in Chemistry, 2010, 22(12): 2276-2281.