中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (5): 524-529 DOI: 10.7536/PC161221 Previous Articles   Next Articles

• Review •

Preparation and Properties of Porous PDCPD-Based Materials

Zhen Yao, Zufei Wang, Yunfei Yu, Wenlong Yang, Kun Cao*   

  1. State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Key Research and Development Program of China (No.2016YFB0302202) and the National Natural Science Foundation of China (No.51473146).
PDF ( 595 ) Cited
Export

EndNote

Ris

BibTeX

The porous polydicyclopentadiene(PDCPD)-based materials which inherit the high modulus of PDCPD have been greatly concerned in recent years. The major methods to prepare porous PDCPD-based materials include sol-gel & supercritical fluid drying,high internal phase emulsion, chemically induced phase separation and chemical foaming. The structure of porous PDCPD-based materials made by different methods determines their various applications. For example, the porous PDCPD-based materials with low-porosity and closed-cell structure that prepared by chemically induced phase separation and chemical foaming can be used as the structural materials. The PDCPD-based composite membrane fabricated by high internal phase emulsion is applied to catalytic reaction. The open-cell PDCPD aerogels made by sol-gel & supercritical fluid drying have high-porosity and low thermal conductivity (<20 mW/(m·K)), which is a good candidate for the thermal insulation materials. The development of the porous PDCPD-based materials are also prospected.
Contents
1 Introduction
2 Sol-gel & supercritical fluid drying
3 High internal phase emulsion
4 Chemically induced phase separation
5 Chemical foaming
6 Conclusion

CLC Number: 

[1] 胡方圆(Hu F Y),郑玉斌(Zheng Y B). 高分子通报(Polymer Bulletin), 2011, 9:139.
[2] Newburg N R. US 4481344, 1984.
[3] Lee J K, Gould G L. US 2006/0229374, 2006.
[4] Lee J K, Gould G L. J. Sol-Gel Sci. Technol., 2007, 44:29.
[5] Mohite D P, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N. Soft Matter, 2013, 9:1516.
[6] Mohite D P, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N. Soft Matter, 2013, 9:1531.
[7] Bang A, Mohite D, Saeed A M, Leventis N, Sotiriou-Leventis C. J. Sol-Gel Sci. Technol., 2015, 75:460.
[8] Lenhardt J M, Kim S H, Nelson A J, Singhal P, Baumann T F, Satcher J H. Polymer, 2013, 54:542.
[9] Kim S H, Shin S J, Lenhardt J M, Braun T, Sain J D, Valdez C A, Leif R N, Kucheyev S O, Wu K J J, Biener J. ACS Appl. Mater. Interfaces, 2013, 5:8111.
[10] Kova?i? S, Krajnc P, Slugovc C. Chem. Commun., 2010, 46:7504.
[11] Kova?i? S, Jeábek K, Krajnc P, Slugovc C. Polym. Chem., 2012, 3:325.
[12] Kova?i? S, Matsko N B, Jerabek K, Krajnc P, Slugovc C. J. Mater. Chem. A, 2013, 1:487.
[13] Kova?i? S, Preishuber-Pflügl F, Slugovc C. Macromol. Mater. Eng., 2014, 299:843.
[14] Knall A C, Kova?i? S, Hollauf M, Reishofer D, Saf R, Slugovc C. Chem. Commun., 2013, 49:7325.
[15] Mert E, Slugovc C, Krajnc P. Express Polym. Lett., 2015, 9:344.
[16] Kova?i? S, Kren H, Krajnc P, Koller S, Slugovc C. Macromol. Rapid Commun., 2013, 34:581.
[17] Kova?i? S, Mazaj M, Ješelnik M, Pahovnik D, ?agar E, Slugovc C, Logar N Z. Macromol. Rapid Commun., 2015, 36:1605.
[18] Kova?i? S, An?lovar A, Erjavec B, Kapun G, Matsko N B, ?igon M, ?agar E, Pintar A, Slugovc C. ACS Appl. Mater. Interfaces, 2014, 6:19075.
[19] Kova?i? S, Matsko N B, Ferk G, Slugovc C. J. Mater. Chem. A, 2013, 1:7971.
[20] Della Martina A, Hilborn J, Mühlebach A. Macromolecules, 2000, 33:2916.
[21] Della Martina A, Hilborn J. J. Mater. Res., 2001, 16:2045.
[22] Della Martina A, Garamszegi L, Hilborn J G. J. Polym. Sci. Pol. Chem., 2003, 41:2036.
[23] Della Martina A, Graf R, Hilborn J G. J. Appl. Polym. Sci., 2005, 96:407.
[24] Chen L, Phillip W A, Cussler E, Hillmyer M A. J. Am. Chem. Soc., 2007, 129:13786.
[25] Chen L, Hillmyer M A. Macromolecules, 2009, 42:4237.
[26] Amendt M A, Chen L, Hillmyer M A. Macromolecules, 2010, 43:3924.
[27] Phillip W A, Amendt M, O'Neill B, Chen L, Hillmyer M A, Cussler E L. ACS Appl. Mater. Interfaces, 2009, 1:472.
[28] 陈国伟(Chen G W),赫玉欣(He Y X),李旭阳(Li X Y), 刘秋菊(Liu Q J),张玉清(Zhang Y Q). 高分子材料科学与工程(Polymeric Materials Science and Engineering), 2015:149.
[1] Jie Wang, Yaqing Feng, Bao Zhang. MOF-COF Hybrid Frameworks Materials [J]. Progress in Chemistry, 2022, 34(6): 1308-1320.
[2] Bo Tang, Wei Wang, Aiqin Luo. New Porous Materials Used as Chiral Stationary Phase for Chromatography [J]. Progress in Chemistry, 2022, 34(2): 328-341.
[3] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[4] Jian Li, Enshuang Zhang, Yuanyuan Liu, Hongyan Huang, Yuefeng Su, Wenjing Li. Preparation of the Ultralow Density Aerogel and Its Application [J]. Progress in Chemistry, 2020, 32(6): 713-726.
[5] Suyan Zhao, Chang Liu, Hao Xu, Xiaobo Yang. Two-Dimensional Covalent Organic Frameworks Photocatalysts [J]. Progress in Chemistry, 2020, 32(2/3): 274-285.
[6] Qiang Jia, Hongwei Song, Sheng Tang, Jing Wang, Yinxian Peng. Synthesis of the Functionalized Porous Materials and Their Applications in the Specific Recognition and Separation [J]. Progress in Chemistry, 2019, 31(8): 1148-1158.
[7] Jie Liu, Yuan Zeng, Jun Zhang, Haijun Zhang, Jianghao Liu. Preparation, Structures and Properties of Three-Dimensional Graphene-Based Materials [J]. Progress in Chemistry, 2019, 31(5): 667-680.
[8] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[9] Xinxin Jiang, Chengjun Zhao, Chunju Zhong, Jianping Li*. The Electrochemical Sensors Based on MOF and Their Applications [J]. Progress in Chemistry, 2017, 29(10): 1206-1214.
[10] Yu Xianglin, Chen Xiaojiao, Zhang Biyu, Rao Cong, He Yuan, Li Junbo. Ordered Mesoporous Material-Based Fluorescence Probes and Their Applications [J]. Progress in Chemistry, 2016, 28(6): 896-907.
[11] Yu Na, Ding Huimin, Wang Cheng. Synthesis and Application of Organic Molecular Cages [J]. Progress in Chemistry, 2016, 28(12): 1721-1731.
[12] Feng Yuchen, Jie Suyun, Li Bogeng. Telechelic Polymers and Block Copolymers Prepared via Olefin-Metathesis Polymerization [J]. Progress in Chemistry, 2015, 27(8): 1074-1086.
[13] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[14] Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao. Fabrication and Application of New Polymer-Based Materials by Freeze-Drying [J]. Progress in Chemistry, 2014, 26(11): 1832-1839.
[15] Wang Wenqian, Chen Linfeng, Wen Yongqiang*, Zhang Xueji, Song Yanlin, Jiang Lei. Mesoporous Silica Nanoparticle-Based Controlled-Release System [J]. Progress in Chemistry, 2013, 25(05): 677-691.