中文
Announcement
More
Progress in Chemistry 2017, Vol. 29 Issue (1): 75-82 DOI: 10.7536/PC161225 Previous Articles   Next Articles

Special Issue: 中国化学印记

• Review •

NMR Study of Protein Structure and Function in Cell-Like Environment

Guohua Xu, Conggang Li*, Maili Liu*   

  1. Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Collaborative Innovation Center of Chemistry for Life Sciences, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21075134, 21173258, 21505152) and the Ministry of Science and Technology of China (No. 2013CB910202).
PDF ( 443 ) Cited
Export

EndNote

Ris

BibTeX

Most proteins function in the cell where macromolecular crowding, confinement and quinary interaction are ubiquitous. More and more researches suggest that the complex cellular environment affects protein's structure and function. Therefore, for protein studies, the closer to native cellular environment, the more likely molecular mechanisms of proteins function could be revealed accurately. In-cell study of protein structure and function has been a frontier topic in protein science. Nuclear magnetic resonance (NMR) spectroscopy is the most promising technique for protein structural and functional assay at atomic level in complex environments. Here, we summarize our recent progress in protein structural and functional studies in macromolecular crowding, confinement, prokaryotic and eukaryotic cells by NMR spectroscopy. Two model proteins, an intrinsic disordered protein α-synuclein and a multi-domain protein calmodulin, are employed to show how macromolecular crowding and confinement affect protein structure and function, respectively. Then in-cell NMR methods, including labeling strategy, cytoplasmic viscosity measurement, quinary interaction quantification are developed to obtain high-quality NMR spectra for facilitating protein structural and functional studies in living cells. Ca2+-induced calmodulin conformational transitions and GB1 protein structural determination in living Xenopus laevis oocytes, are shown here as typical applications of in-cell NMR. Finally, the conclusion and perspective of environmental effects on protein structure and function are presented.

Contents
1 Introduction
2 The effect of macromolecular crowding on protein structure and function
3 The effect of confinement on protein structure and function
4 In vivo NMR study of protein structure and function
4.1 Labeling strategies for in-cell protein NMR study
4.2 The determination of cytoplasmic viscosity and weak protein interactions in living cells
4.3 The observation of Ca2+-induced calmodulin conformational transitions in intact Xenopus laevis oocytes
4.4 Direct determination of protein structure in living Xenopus laevis oocytes
5 Conclusion

CLC Number: 

[1] Ellis R J. Trends Biochem. Sci., 2001, 26:597.
[2] Ellis R J. Curr. Opin. Struct. Biol., 2001, 11:114.
[3] Minton A P. J. Biol. Chem., 2001, 276:10577.
[4] Monteith W B, Cohen R D, Smith A E, Guzman-Cisneros E, Pielak G J. Proc. Natl. Acad. Sci. U. S. A., 2015, 112:1739.
[5] Smith A E, Zhang Z T, Pielak G J, Li C G. Curr. Opin. Struct. Biol., 2015, 30:7.
[6] Ellis R J, Minton A P. Biol. Chem., 2006, 387:485.
[7] Zhou H X, Rivas G, Minton A P. Annu. Rev. Biophys., 2008, 37:375.
[8] Senske M, Smith A E, Pielak G J. Angew. Chem. Int. Ed., 2016, 55:3586.
[9] Akabayov S R, Akabayov B, Richardson C C, Wagner G. J. Am. Chem. Soc., 2013, 135:10040.
[10] Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D, Gruebele M, Cheung M S. Proc. Natl. Acad. Sci. U. S. A., 2010, 107:17586.
[11] Stagg L, Zhang S Q, Cheung M S, Wittung Stafshede P. Proc. Natl. Acad. Sci. U. S. A., 2007, 104:18976.
[12] Tian J H, Garcia A E. J. Am. Chem. Soc., 2011, 133:15157.
[13] Mittal J, Best R B. Proc. Natl. Acad. Sci. U. S. A., 2008, 105:20233.
[14] Li C G, Liu M L. FEBS Lett., 2013, 587:1008.
[15] Li C G, Charlton L M, Lakkavaram A, Seagle C, Wang G F, Young G B, Macdonald J M, Pielak G J. J. Am. Chem. Soc., 2008, 130:6310.
[16] Wang Y Q, Li C G, Pielak G J. J. Am. Chem. Soc., 2010, 132:9392.
[17] Li C G, Wang Y Q, Pielak G J. J. Phys. Chem. B, 2009, 113:13390.
[18] Theillet F X, Binolfi A, Frembgen-Kesner T, Hingorani K, Sarkar M, Kyne C, Li C G, Crowley P B, Gierasch L, Pielak G J, Elcock A H, Gershenson A, Selenko P. Chem. Rev., 2014, 114:6661.
[19] Miklos A C, Li C G, Sharaf N G, Pielak G J. Biochemistry, 2010, 49:6984.
[20] Xu G, Cheng K, Wu Q, Liu M, Li C. Angew. Chem. Int. Ed., 2017, 56:530.
[21] Bai J, Liu M, Pielak G J, Li C. ChemPhysChem, 2017, 18:55.
[22] Uversky V N. J. Neurochem., 2007, 103:17.
[23] Chin D, Means A R. Trends Cell Biol., 2000, 10:322.
[24] Anthis N J, Doucleff M, Clore G M. J. Am. Chem. Soc., 2011, 133:18966.
[25] Barbato G, Ikura M, Kay L E, Pastor R W, Bax A. Biochemistry, 1992, 31:5269.
[26] Babu C R, Flynn P F, Wand A J. J. Am. Chem. Soc., 2001, 123:2691.
[27] Simorellis A K, Flynn P F. J. Am. Chem. Soc., 2006, 128:9580.
[28] O'Brien E S, Nucci N V, Fuglestad B, Tommos C, Wand A J. J. Biol. Chem., 2015, 290:30879.
[29] Zhou H X. Arch. Biochem. Biophys., 2008, 469:76.
[30] Ye Y S, Liu X L, Chen Y H, Xu G H, Wu Q, Zhang Z T, Yao C D, Liu M L, Li C G. Chem. Eur. J., 2015, 21:8686.
[31] Xu G H, Ye Y S, Liu X L, Cao S F, Wu Q, Cheng K, Liu M L, Pielak G J, Li C G. Biochemistry, 2014, 53:1971.
[32] Li C G, Wang G F, Wang Y Q, Creager Allen R, Lutz E A, Scronce H, Slade K M, Ruf R A S, Mehl R A, Pielak G J. J. Am. Chem. Soc., 2010, 132:321.
[33] Li C G, Pielak G J. J. Am. Chem. Soc., 2009, 131:1368.
[34] Ye Y, Liu X, Zhang Z, Wu Q, Jiang B, Jiang L, Zhang X, Liu M, Pielak G J, Li C. Chem. Eur. J., 2013, 19:12705.
[35] Ye Y S, Liu X L, Xu G H, Liu M L, Li C G. Angew. Chem. Int. Ed., 2015, 54:5328.
[36] Pan B B, Yang F, Ye Y S, Wu Q, Li C G, Huber T, Su X C. Chem. Commun., 2016, 52:10237.
[37] Sakakibara D, Sasaki A, Ikeya T, Hamatsu J, Hanashima T, Mishima M, Yoshimasu M, Hayashi N, Mikawa T, Walchli M, Smith B O, Shirakawa M, Guntert P, Ito Y. Nature, 2009, 458:102.
[38] Muntener T, Haussinger D, Selenko P, Theillet F X. J. Phys. Chem. Lett., 2016, 7:2821.
[39] Schmidt H L F, Sperling L J, Gao Y G, Wylie B J, Boettcher J M, Wilson S R, Rienstra C A. J. Phys. Chem. B, 2007, 111:14362.
[1] Yawei Liu, Xiaochun Zhang, Kun Dong, Suojiang Zhang. Research of Condensed Matter Chemistry on Ionic Liquids [J]. Progress in Chemistry, 2022, 34(7): 1509-1523.
[2] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[3] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[4] Jing Wang, Nan Yao*. Ni-Based Catalysts for Syngas Methanation Reaction [J]. Progress in Chemistry, 2017, 29(12): 1509-1517.
[5] Xue Lijun, Zhang Di, Wei Jie, Liu Xinmei. Pore Confinement Effects of Catalysts [J]. Progress in Chemistry, 2016, 28(4): 450-458.
[6] Zou Yongjin, Xiang Cuili, Qiu Shujun, Chu Hailiang, Sun Lixian*, Xu Fen. Nanoconfined Materials for Hydrogen Storage [J]. Progress in Chemistry, 2013, 25(01): 115-121.
[7] Wang Zhiyong Shi Zujin Gu Zhennan. New Phenomena of Materials Confined in Nano Space [J]. Progress in Chemistry, 2009, 21(11): 2435-2444.