中文
Announcement
More
Progress in Chemistry DOI: 10.7536/PC120615 Previous Articles   Next Articles

• Review •

Nanoconfined Materials for Hydrogen Storage

Zou Yongjin1, Xiang Cuili1, Qiu Shujun1, Chu Hailiang1, Sun Lixian*1,2, Xu Fen3   

  1. 1. Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China;
    2. Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 11602;
    3. Faculty of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
  • Received: Revised: Online: Published:
PDF ( 1435 ) Cited
Export

EndNote

Ris

BibTeX

As a clean and ideal energy source, hydrogen energy has received extensive attention in recent years. However, the technology for hydrogen storage is still the key technology restricting the application of hydrogen commercialization. Hydrogen storage materials are considered to be safe, efficient way for solid-state hydrogen storage. Therefore, the development of new high-capacity hydrogen storage materials and hydrogen storage technology is one of the hot topics nowadays. Nanoconfinement is to fill the materials in the nanopores. By using the interaction between the filled materials and nanopore, the reaction is promoted. In recent years, nanoconfinement has become an effective way to enhance the kinetics and thermodynamics of the hydrogen storage materials. In this paper, the development of nanoconfined hydrogen storage materials has been reviewed. The preparation, hydrogen storage properties, reaction mechanism and existing problems for nanoconfined hydrogen storage materials are discussed. In addition, the future prospect of nanoconfined hydrogen storage materials is addressed. Contents
1 Introduction
2 Preparation of nanoconfined hydrogen storage materials
3 Performance of nanoconfined hydrogen storage materials
3.1 Carbon-based scaffold confined hydrogen storage materials
3.2 MOFs scaffold confined hydrogen storage materials
3.3 Metal oxide scaffold confined hydrogen storage materials
3.4 Polymer scaffold confined hydrogen storage materials
4 Existing problems
5 Conclusion and perspective

CLC Number: 

[1] Varin R A, Zbroniec L, Polanski M, Bystrzycki J. Energies, 2011, 4: 1-25
[2] Fang F, Li Y T, Song Y, Sun D L, Zhang Q A, Ouyang L Z, Zhu M. J. Phys. Chem. C, 2011, 115: 13528-13533
[3] 刘淑生(Liu S S), 孙立贤(Sun L X), 徐芬(Xu F). 化学进展(Progress in Chemistry), 2008, 20: 280-287
[4] Liu S S, Sun L X, Zhang Y, Xu F, Zhang J, Chu H L, Fan M Q, Zhang T, Song X Y, Grolier J P. Int. J. Hydrogen Energy, 2009, 34: 8079-8085
[5] Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. Acta Materialia, 2011, 59: 1829-1838
[6] Gutowska A, Li Y, Shin Y, Wang C M, Li X S, Linehan J C, Smith R S, Kay B D, Schmid B, Shaw W, Gutowski M, Autrey T. Angew. Chem. Int. Ed., 2005, 44: 3578-3582
[7] Zhao J Z, Shi J F, Zhang X W, Cheng F Y, Liang J, Tao Z L, Chen J. Adv. Mater., 2010, 22: 394-397
[8] Nielsen T K, Manickam K, Hirscher M, Besenbacher F, Jensen T R. ACS Nano, 2009, 3: 3521-3528
[9] Li S F, Sun W W, Tang Z W, Guo Y H, Yu X B. Int. J. Hydrogen Energy, 2012, 37: 3328-3337
[10] Vajo J J, Salguero T T, Gross A F, Skeith S L, Olson G L. J. Alloys Compd., 2007, 446/447: 409-414
[11] Fichtner M. Nanotechnol., 2009, 20: art. no. 204009
[12] Blalde C P, Hereijgers B P C, Bitter J H, Jong K P. J. Am. Chem. Soc., 2008, 130: 6761-6765
[13] Lohstroh W, Roth A, Hahn H, Fichtner M. Chem. Phys. Chem., 2010, 11: 789-792
[14] Stephens R D, Gross A F, van Atta S L, Vajo J J. Nanotechnol., 2009, 20: art. no. 204018
[15] Verkuijlen M H W, Gao J, Adelhelm P, Bentum P J M, Jongh P E. J. Phys. Chem. C, 2010, 114: 4683-4692
[16] Gao J, Adelhelm P, Verkuijlen M H W, Rongeat C, Herrich M, Bentum P J M. J. Phys. Chem. C, 2010, 114: 4675-4682
[17] Adelhelm P, Gao J, Verkuijlen M H W, Rongeat C, Herrich M, Bentum P J M. Chem. Mater., 2010, 22: 2233-2238
[18] Jongh P E, Wagemans R W P, Eggenhuisen T M, Danuvillier B S, Radstake P B, Meeldijk J D. Chem. Mater., 2007, 19: 6052-6057
[19] Gross A F, Ahn C C, van Atta S L, Liu P, Vajo J J. Nanotechnol., 2009, 20: art. no. 204005
[20] Zhang S, Gross A F, van Atta S L, Lopez M, Liu P, Ahn C C. Nanotechnol., 2009, 20: art. no. 204027
[21] Vajo J J. Current Opinion in Solid State and Materials Science, 2011, 15: 52-61
[22] Fang Z Z, Wang P, Rufford T E, Kang X D, Lu G Q, Cheng H M. Acta Materialia, 2008, 56: 6257-6263
[23] Liu X F, Peaslee D, Jost C Z, Baumann T F, Majzoub E H. Chem. Mater., 2011, 23: 1331-1336
[24] Liu X F, Peaslee D, Jost C Z, Majzoub E H. J. Phys. Chem. C, 2010, 114: 14036-14041
[25] Ampoumogli A, Steriotis T, Trikalitis P, Giasafaki D, Bardaji E G, Fichtner M, Charalambopoulou G. J. Alloys Compd., 2011, 509: S705-S708
[26] Gross A F, Vajo J J, Atta S L V, Olson G L. J. Phys. Chem. C, 2008, 112: 5651-5657
[27] Shane D T, Corey R L, Mclntosh C, Rayhel L H, Bowman R C, Vajo J J. J. Phys. Chem. C, 2010, 114: 4008-4014
[28] Lee H S, Lee Y S, Suh J Y, Kim M, Yu J S, Cho Y W. J. Phys. Chem. C, 2011, 115: 20027-20035
[29] Gosalawit-Utke R, Nielsen T K, Saldan I, Laipple D, Cerenius Y, Jensen T R, Klassen T, Dornheim M. J. Phys. Chem. C, 2011, 115: 10903-10910
[30] Nielsen T K, Bosenberg U, Gosalawsit R, Dorbheim M, Cerenius Y, Besenbacher F, Jensen T R. ACS Nano, 2010, 4: 3903-3908
[31] Nielsen T K, Manickam K, Hirscher M, Besenbacher F, Jensen T R. ACS Nano, 2009, 3: 3521-3528
[32] Nielsen T K, Polanski M, Zasada D, Javadian P, Besenbacher F, Bystrzycki J, Skibsted J, Jensen T R. ACS Nano, 2011, 5: 4056-4064
[33] Li L, Yao X D, Sun C H, Du A J, Cheng L, Zhu Z H, Yu C Z, Zou J, Smith S C, Wang P, Cheng H M, Frost R L, Lu G Q. Adv. Funct. Mater., 2009, 19: 265-271
[34] Ngene P, Verkuijlen M H W, Zheng Q, Kragten J, Bentum P J M, Bittera J H, Jongh P E. Faraday Discuss., 2011, 151: 47-58
[35] Li S F, Guo Y H, Sun W W, Sun D L, Yu X B. J. Phys. Chem. C, 2010, 114: 21885-21890
[36] Balde C P, Hereijgers B P C, Bitter J H, Jong K P. Angew. Chem. Int. Ed., 2006, 45: 3501-3503
[37] Sun C, Du A, Yao X, Smith S C. J. Phys. Chem. C, 2011, 115: 12580-12585
[38] Chang K, Kim E, Weck P F, Tománek D. J. Chem. Phys., 2011, 134: 214501-214507
[39] Bhakta R K, Herberg J L, Jacobs B, Highley A, Behrens R Jr, Ockwig N W, Greathouse J A, Allendorf M D. J. Am. Chem. Soc., 2009, 131: 13198-13199
[40] Li Z, Zhu G, Lu G, Qiu S, Yao X. J. Am. Chem. Soc., 2010, 132: 1490-1491
[41] Gadipelli S, Ford J, Zhou W, Wu H, Udvic T J, Yildirim T. Chem. Eur. J., 2011, 17: 6043-6047
[42] Srinivas G, Ford J, Zhou W, Yildirim T. Int. J. Hydrogen Energy, 2011, 37: 3633-3638
[43] Sun W W, Li S F, Mao J F, Guo Z P, Liu H K, Dou S X, Yu X B. Dalton Trans., 2011, 40: 5673-5676
[44] Zhang Y, Zhang W S, Wang A Q, Sun L X, Fan M Q, Chu H L, Sun J C, Zhang T. Int. J. Hydrogen Energy, 2007, 32: 3976-3980
[45] Si X L, Li F, Sun L X, Xu F, Liu S S, Zhang J, Zhu M, Ouyang L Z, Sun D L, Liu Y L. J. Phys. Chem. C, 2011, 115: 9780-9786
[46] Zheng S, Fang F, Zhou G, Chen G, Ouyang L, Zhu M. Chem. Mater., 2008, 20: 3954-3958
[47] Zhang T R, Yang X J, Yang S Q, Li D X, Cheng F Y, Tao Z L, Chen J. Phys. Chem. Chem. Phys., 2011, 13: 18592-18599
[48] 李永涛(Li Y T), 周广有(Zhou G Y), 方方(Fang F), 陈国荣(Chen G R), 桑革(Sang G), 孙大林(Sun D L). 化学进展(Progress in Chemistry), 2010, 22: 241-247
[49] Li S F, Tang Z W, Tan Y B, Yu X B. J. Phys. Chem. C, 2012, 116: 1544-1549
[50] Fichtner M. Phys. Chem. Chem. Phys., 2011, 13: 21186-21195
[51] Nielsen T K, Besenbacher F, Jenen T R. Nanoscale, 2011, 3: 2086-2098
[52] Rude L H, Nielsen T K, Ravnsbak D B, Bosenberg U, Ley M B, Richter B, Arnbjerg L M, Dornheim M, Filinchuk Y, Besenbacher F, Jensen T R. Phys. Status Solidi. A, 2011, 8: 1754-1773

[1] Zhao Ding, Weijie Yang, Kaifu Huo, Leon Shaw. Thermodynamics and Kinetics Tuning of LiBH4 for Hydrogen Storage [J]. Progress in Chemistry, 2021, 33(9): 1586-1597.
[2] Tingting Gu, Jian Gu, Yu Zhang, Hua Ren. Metal Borohydride-Based System for Solid-State Hydrogen Storage [J]. Progress in Chemistry, 2020, 32(5): 665-686.
[3] Qilu Yao, Hongxia Du, Zhang-Hui Lu. Catalytic Hydrolysis of Ammonia Borane for Hydrogen Production [J]. Progress in Chemistry, 2020, 32(12): 1930-1951.
[4] Shiliang Zhang, Qilu Yao, Zhanghui Lu*. Synthesis and Dehydrogenation of Hydrazine Borane [J]. Progress in Chemistry, 2017, 29(4): 426-434.
[5] Li Chao, Fan Meiqiang, Chen Haichao, Chen Da, Tian Guanglei, Shu Kangying. Thermodynamics and Kinetics Modifications on the Li-Mg-N-H Hydrogen Storage System [J]. Progress in Chemistry, 2016, 28(12): 1788-1797.
[6] Liu Xin, Wu Chuan, Wu Feng, Bai Ying. Light Metal Complex Hydride Hydrogen Storage Systems [J]. Progress in Chemistry, 2015, 27(9): 1167-1181.
[7] Wang Fangli, Hong Min, Xu Lidan, Geng Zhirong. Nanomaterial-Based Surface-Assisted Laser Desorption Ionization Mass Spectroscopy [J]. Progress in Chemistry, 2015, 27(5): 571-584.
[8] Li Xue, Zhang Yifang, Qi Weihong, Cao Xiaowu, Wang Yuan, Li Haohua. Hydrogen Storage Nanoalloys [J]. Progress in Chemistry, 2013, 25(07): 1122-1130.
[9] Ye Qiumei, Song Ye, Liu Peng, Hu Junjun. Fabrication of Special-Type Nanoporous Anodic Alumina Templates [J]. Progress in Chemistry, 2011, 23(12): 2617-2626.
[10] Xu Shujun, Liang Liyun, Li Buyi, Luo Yali, Liu Chengmei, Tan Bien. Research Progress on Microporous Organic Polymers [J]. Progress in Chemistry, 2011, 23(10): 2085-2094.
[11] . Hydrogen Storage by Encapsulation on Porous Materials [J]. Progress in Chemistry, 2010, 22(11): 2238-2247.
[12] . Anode Eelectrocatalysts and Reaction Mechnism for the Direct Borohydide Fuel Cell [J]. Progress in Chemistry, 2010, 22(09): 1720-1728.
[13] Li Yongtao Zhou Guangyou Fang Fang Chen Guorong Sang Ge Sun Dalin. Hydrogen Storage Properties of Complex Hydrides Loaded in Porous Materials [J]. Progress in Chemistry, 2010, 22(01): 241-247.
[14] Du Xiaoming Li Jing Wu Erdong. The Study of Adsorption of Hydrogen on Zeolites [J]. Progress in Chemistry, 2010, 22(01): 248-254.
[15] Li Cailin Chen Yungui Wu Chaoling Zhou Jingjing PangLijuan. Theoretical and Experimental Studies on Metal-Carbon-Based Materials for Hydrogen Storage [J]. Progress in Chemistry, 2009, 21(6): 1101-1106.