中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1672-1681 DOI: 10.7536/PC160502 Previous Articles   Next Articles

• Review and comments •

Applications of Novel Biomass-Derived Platform Molecule γ-Valerolactone

Wei Junnan, Tang Xing*, Sun Yong, Zeng Xianhai, Lin Lu*   

  1. College of Energy, Xiamen University, Xiamen 361102, China
  • Received: Revised: Online: Published:
PDF ( 1445 ) Cited
Export

EndNote

Ris

BibTeX

The transformation of renewable biomass resources into a variety of chemicals and fuels via biomass-derived platform molecules has recently attracted increasing attention from industrial and academic communities. Of numerous platform molecules, γ-valerolactone (GVL) is able to be employed as a sustainable starting material that can be used to produce carbon-based chemicals and energy, which thus is considered as one of the most promising biomass-derived platform molecules. This paper mainly introduces and summarizes research advances on the downstream applications of GVL which have been made in the last decade, including employing GVL as a green solvent and employing GVL as a starting material to produce carbon-based chemicals, polymers and liquid hydrocarbon fuels. The perspective of GVL is also suggested in this review.

Contents
1 Introduction
2 Employing GVL as a green solvent
3 Synthesis of carbon-based chemicals from GVL
4 Synthesis of polymeric materials from GVL
5 Synthesis of liquid hydrocarbon fuels from GVL
6 Conclusion

CLC Number: 

[1] Liu S J. Bioproc. Eng. Biorefinery, 2012, 1:129.
[2] 余强(Yu Q), 庄新姝(Zhuang X S), 袁振宏(Yuan Z H), 亓伟(Qi W), 王琼(Wang Q), 谭雪松(Tan X S), 许敬亮(Xu J L), 张宇(Zhang Y), 徐慧娟(Xu H J), 马隆龙(Ma L L). 化工进展(Chemical Industry and Engineering Progress), 2012, 31(4):784.
[3] Perlack R D, Wright L L, Turhollow A, Graham R L, Stoks B, Erbach D C. Biomass as feedstock for a bioenergy and bioproducts industry:The technical feasibility of a billion-ton annual supply,[2005-04-28]. http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA436753.
[4] Saxena R C, Adhikari D K, Goyal H B. Renew. Sustain. Energy Rev., 2009, 13(1):167.
[5] 林鹿(Lin L), 何北海(He B H), 孙润仓(Sun R C), 胡若飞(Hu R F). 化学进展(Progress in Chemistry), 2007, 19(7/8):1206.
[6] 陆强(Lu Q), 朱锡锋(Zhu X F), 李全新(Li Q X), 郭庆祥(Guo Q X), 朱清时(Zhu Q S). 化学进展(Progress in Chemistry), 2007, 19(7):1064.
[7] Fischer G, Schrattenholzer L. Biomass Bioenergy, 2001, 20(3):151.
[8] Kumar P, Barrett D M, Delwiche M J, Ind P S. Ind. Eng. Chem. Res., 2009, 48(8):3713.
[9] 江俊飞(Jiang J F), 应浩(Ying H), 蒋剑春(Jiang J C), 涂军令(Tu J L). 生物质化学工程(Biomass Chemical Engineering), 2012, 46(4):52.
[10] Spivey J J, Egbebi A. Chem. Soc. Rev., 2007, 36(9):1514.
[11] Zaldivar J, Nielsen J, Olsson L. Appl. Microbiol. Biotechnol., 2001, 56(1/2):17.
[12] Maki-Arvela P, Simakova I L, Salmi T, Murzin D Y. Chem. Res., 2014, 114(3):1909.
[13] Yan K, Wu G, Lafleur T, Jarvis C. Renew. Sustain. Energy Rev., 2014, 38:663.
[14] van Putten R J, van der Waal J C, de Jong E, Rasrendra C B, Heeres H J, de Vries J G. Chem. Res., 2013, 113(3):1499.
[15] Rackemann D W, Doherty W O S. Biofuel Bioprod. Bior., 2011, 5(2):198.
[16] Tang X, Zeng X H, Li Z, Hu L, Sun Y, Liu S J, Lei T Z, Lin L. Renew. Sust. Energy Rev., 2014, 40:608.
[17] Laskar D D, Yang B, Wang H, Lee J. Biofuel Bioprod. Bior., 2013, 7(5):602.
[18] 彭林才(Peng L C), 林鹿(Lin Lu), 李辉(Li H). 化学进展(Progress in Chemistry), 2012, 24:801.
[19] 唐兴(Tang X), 胡磊(Hu L), 孙勇(Sun Y), 曾宪海(Zeng X H), 林鹿(Lin L). 化学进展(Progress in Chemistry), 2013, 25(11):1906.
[20] Wright W R, Palkovits R. ChemSusChem, 2012, 5(9):1657.
[21] Horváth I T, Mehdi H, Fábos V, Mike L L. Green Chem., 2008, 10(2):238.
[22] Fegyverneki D, Orha L, Láng G, Horváth I T. Tetrahedron, 2010, 66(5):1078.
[23] Strádi A, Molnár M, Óvári M, Dibo G, Richter F U, Mika L T. Green Chem., 2013, 15(7):1857.
[24] Strádi A, Molnár M, Szakál P, Dibó G, Gáspár D, Mika L T. RSC Adv., 2015, 5(89):72529.
[25] Duan Z Q, Hu F. Green Chem., 2012, 14(6):1581.
[26] Ismalaj E, Strappaveccia G, Ballerini E, Vaccaro L. ACS Sustain. Chem. Eng., 2014, 2(10):2461.
[27] Vaccaro L, Strappaveccia G, Marrocchi A, Pizzo F, Luciani L, Bartollini E. Green Chem., 2015, 17(2):1071.
[28] Strappaveccia G, Ismalaj E, Petrucci C, Lanari D, Marrocchi A, Drees M, Facchetti A, Vaccaro L. Green Chem., 2015, 17(1):365.
[29] Qi L, Mui Y F, Lo S W, Lui M Y, Akien G R, Horváth I T. ACS Catal., 2014, 4(5):1470.
[30] Gallo J M R, Alonso D M, Mellmer M A, Dumesic J A. Green Chem., 2013, 15(1):85.
[31] Qi L, Horváth I T. ACS Catal., 2012, 2(11):2247.
[32] Wettstein S, Martin Alonso D, Chong Y, Dumesic J A. Energy Environ. Sci., 2012, 5(8):8199.
[33] Alonso D M, Gallo J M R, Mellmer M A, Dumesic J A, Lim W Y, Dumesic J A. Catal. Sci. Technol., 2013, 3:927.
[34] Heltzel J, Lund C R F. Catal. Today, 2016, 269:88.
[35] Gurbuz E I, Gallo J M R, Alonso D M, Wettstein S G. Angew. Chem. Int. Ed., 2013, 52(4):1270.
[36] Zhang L, Yu H, Wang P, Li Y. Bioresour. Technol., 2014, 151:355.
[37] Xu Z, Li W, Du Z, Wu H, Jameel H, Chang H M, Ma L. Bioresour. Technol., 2015, 198:764.
[38] Bruce S M, Zong Z, Chatzidimitriou A, Wettstein S. J. Mol. Catal. A, 2016, DOI:http://dx.doi.org/10.1016/j.molcata.2016.02.025.
[39] Alonso D M, Wettstein S G, Mellmer M A, Gurbuz E I, Dumesic J A. Energy Environ. Sci., 2013, 6(1):76.
[40] Shuai L, Questell-Santiago Y M, Luterbacher J S. Green Chem., 2016, 18(4):937.
[41] Wu M, Yan Z Y, Zhang X M, Xu F, Sun R C. Bioresour. Technol., 2015, 200:23.
[42] Luterbacher J S, Rand J M, Alonso D M, Han J, Youngquist J T, Maravelias C T, Pfleger B F, Dumesic J A. Science, 2014, 343(6168):277.
[43] Bourne R A, Stevens J G, Ke J, Poliakoff M. Chem. Commun., 2007, 44:4632
[44] Han J, Luterbacher J S, Alonso D M, Dumesic J A, Maravelias C T. Bioresour. Technol., 2015, 182:258.
[45] Luterbacher J S, Alonso D M, Rand J M, Questell-Santiago Y M, Yeap J H, Pfleger B F, Dumesic J A. ChemSusChem, 2015, 8(8):1317.
[46] Mellmer M A, Martin Alonso D, Luterbacher J S, Gallo J M R, Dumesic J A. Green Chem., 2014, 16(11):4659.
[47] Fang W, Sixta H. ChemSusChem, 2015, 8(1):73.
[48] Wu M, Liu J K, Yan Z Y. RSC Adv., 2016, 6(8):6196.
[49] Luterbacher J S, Azarpira A, Motagamwala A H, Lu F, Ralph J, Dumesic J A. Energy Environ. Sci., 2015, 8(9):2657.
[50] Cannon G W, Casler Jr. J J, Gaines W A. J. Org. Chem., 1952, 17(9):1245.
[51] Caretto A, Noè M, Selva M, Perosa A. ACS Sustain. Chem. Eng., 2014, 2(9):2131.
[52] Mosby W L. J. Am. Chem. Soc., 1952, 74(10):2564.
[53] Mosby W L. J. Org. Chem., 1953, 18(8):964.
[54] Mosby W L. J. Org. Chem., 1954, 19(3):294.
[55] Brauman J I, Pandell A J. J. Am. Chem. Soc., 1967, 89(21):5421.
[56] Blicke F F, Brown B A. J. Org. Chem., 1961, 26(10):3685.
[57] Bond J Q, Alonso D M, West R M, Dumesic A. Langmuir, 2010, 26(21):16291.
[58] Kellicutt A B, Salary R, Abdelrahman O A, Bond J Q. Catal. Sci. Technol., 2014, 4:2267.
[59] Wang D, Hakim S H, Alonso D M, Dumesic J A. Chem. Commun., 2013, 48(63):7040.
[60] Bond J Q, Wang D, Alonso D M, Dumesic J A. J. Catal., 2011, 281(2):290.
[61] De Bruycker R, Carstensen H H, Simmie J M, Geem K M V,Marin G B. P. Combust. Inst., 2015, 35(1):515.
[62] Serrano-Ruiz J C, Wang D, Dumesic J A. Green Chem., 2010, 12(4):574.
[63] Pham H N, Pagan-Torres Y J, Serrano-Ruiz J C, Serrano-Ruiz J C, Wang D, Dumesic J A, Datye A K. Appl. Catal. A, 2011, 397(1):153.
[64] Kon K, Onodera W, Shimizu K I. Catal. Sci. Technol., 2014, 4:3227.
[65] Luo W, Bruijnincx P C A, Weckhuysen B M. J. Catal., 2014, 320:33.
[66] Patel A D, Serrano-Ruiz J C, Dumesic J A, Anex R P. Chem. Eng. J., 2010, 160(1):311.
[67] Christian R V, Brown H D, Hixon R M. J. Am. Chem. Soc., 1947, 69(8):1961.
[68] Mehdi H, Fábos V, Tuba R, Bodor A, Mika L T, Horváth I T. Top. Catal. Chem., 2008, 48(1/4):49.
[69] Al-Shaal M G, Dzierbinski A, Palkovits R. Green Chem., 2014, 16(3):1358.
[70] Du X L, Bi Q Y, Liu Y M, Cao Y, He H Y, Fan K N. Green Chem., 2012, 14(4):935.
[71] Upare P P, Lee J M, Hwang Y K, Hwang D W, Lee J H, Halligudi S B, Hwang J S, Chang J S. ChemSusChem, 2011, 4(12):1749.
[72] Obregon I, Gandarias I, Miletic N, Arias P L. ChemSusChem, 2015, 8(20):3483.
[73] Bermúdez J M, Menéndez J Á, Romero A A, Serrano E, Garcia-Martinez J. Green Chem., 2013, 15(10):2786.
[74] Corbel-Demailly L, Ly B K, Minh D P, Tapin B, Especel C, Epron F, Cabiac A, Guillon E, Besson M, Pinel C. ChemSusChem, 2013, 6(12):2388.
[75] Li M, Li G, Li N, Wang A Q, Dong W J, Wang X D, Yu C. Chem. Commun., 2014, 50(12):1414.
[76] Mizugaki T, Nagatsu Y, Togo K, Maeno A, Mitsudome T, Jitsukawa K, Kaneda K. Green Chem., 2015, 17(12):5136.
[77] Mizugaki T, Togo K, Maeno Z, Mitsudome T, Jitsukawa K, Kaneda K. ACS Sustain. Chem. Eng., 2016, 4(3):682.
[78] 夏海岸(Xia H A), 张军(Zhang J), 闫晓沛(Yan X P), 徐思泉(Xu S Q), 杨莉(Li Y). 燃料化学学报(Journal of Fuel Chemistry and Technology), 2015, 43(5):575.
[79] Lee C W, Urakawa R, Kimura Y. Eur. Polym. J., 1998, 34(1):117.
[80] Manzer L E. Appl. Catal. A, 2004, 272(1/2):249.
[81] Vobecka Z, Wei C, Tauer K, Esposito D. Polymer, 2015, 74:262.
[82] Lange J P, Vestering J Z, Haan R J. Chem. Commun., 2007, 33:3488.
[83] Raoufmoghaddam S, Rood M T, Buijze F K W, Drent E, Bouwman E. ChemSusChem, 2014, 7(7):1984.
[84] Gagliardi M, Di Michele F, Mazzolai B, Bifone A. J. Polym. Res., 2015, 22(2):1.
[85] Zeng F X, Liu H F, Deng L, Liao B, Pang H, Guo Q X. ChemSusChem, 2013, 6(4):600.
[86] Yang Y, Wei X, Zeng F, Deng L. Green Chem., 2016, 18(3):691.
[87] Chalid M, Heeres H J, Broekhuis A A. Procedia Chem., 2012, 4:260.
[88] Chalid M, Heeres H J, Broekhuis A A. J. Appl. Polym. Sci., 2012, 123(6):3556.
[89] Chalid M, Heeres H J, Broekhuis A A. Polym-Plast Technol. Eng., 2015, 54(3):234.
[90] Bruno T J, Wolk A, Naydich A. Energy Fuels, 2010, 24(4):2758.
[91] Bereczky Á, Lukács K, Farkas M, Dóbé S. Study of γ-Valerolactone as a Diesel Blend:Engine Performance and Emission characteristics. Sweden:Lund, 2013. 3.
[92] Bereczky Á, Lukács K, Farkas M, Dóbé S. Nat. Resour., 2014, 5(5):177.
[93] Huber G W, Iborra S, Corma A. Chem. Rev., 2006, 106(9):4044.
[94] Lange J P, Price R, Ayoub P M, Louis J, Petrus L, Clarke L, Gosselink H. Angew. Chem. Int. Ed. Eng., 2010, 49(26):4479.
[95] Dong L L, He L, Tao G H, Hu C. RSC Adv., 2013, 3(14):4806.
[96] Pan T, Deng J, Xu Q, Xu Y, Guo X Q, Fu Y. Green Chem., 2013, 15(10):2967.
[97] Sun P, Gao G, Zhao Z, Xia C, Li F. ACS Catal., 2014, 4(11):4136.
[98] Zhang D, Ye F, Guan Y, Wang Y M, Hensen E J M. RSC Adv., 2014, 4(74):39558.
[99] Yan K, Lafleur T J, Wu X, Chai J J, Wu G S, Xie X M. Chem. Commun., 2015, 51(32):6984.
[100] Sun P, Gao G, Zhao Z, Xi C, Li F. Appl. Catal. B, 2016, 189:19.
[101] Chan-Thaw C E, Marelli M, Psaro R, Marelli M, Psaro R, Ravasio N, Zaccheria F. RSC Adv., 2013, 3(5):1302.
[102] Scotti N, Dangate M, Gervasini A, Evangelisti C, Ravasio N, Zaccheria F. ACS Catal., 2014, 4(8):2818.
[103] Rye L, Blakey S, Wilson C W. Energy Environ. Sci., 2010, 3(1):17.
[104] Bond J Q, Alonso D M, Wang D, West R M, Dumesic J A. Science, 2010, 327(5969):1110.
[105] Braden D J, Henao C A, Heltzel J, Maravelias C C, Dumesic J A. Green Chem., 2011, 13(7):1755.
[106] Xin J Y, Yan D X, Ayodele O, Zhang Z, Lu X M, Zhang S J. Green Chem., 2014, 17(2):1065.
[107] Serrano-Ruiz J C, Braden D J, West R M, Dumesic J A. Appl. Catal. B, 2010, 100(1):184.
[108] Gaertner C A, Serrano-Ruiz J C, Braden D J. Ind. Eng. Chem. Res., 2010, 49(13):6027.
[109] Tang X, Li Z, Zeng X H, Jiang Y T, Liu S J, Lei T Z, Sun Y, Lin L. ChemSusChem, 2015, 8(9):1601.
[110] Tang X, Zeng X H, Li Z, Li W F, Jiang Y T, Hu L, Liu S J, Sun Y, Lin L. ChemCatChem, 2015, 7(8):1372.
[111] Tang X, Chen H W, Hu L, Hao W W, Sun Y, Zeng X H, Lin L, Liu S J. Appl. Catal. B, 2014, 147:827.
[1] Bowen Xia, Bin Zhu, Jing Liu, Chunlin Chen, Jian Zhang. Synthesis of 2,5-Furandicarboxylic Acid by the Electrocatalytic Oxidation [J]. Progress in Chemistry, 2022, 34(8): 1661-1677.
[2] Xinglong Li, Yao Fu. Preparation of Furoic Acid by Oxidation of Furfural [J]. Progress in Chemistry, 2022, 34(6): 1263-1274.
[3] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[4] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
[5] Dechao Wang, Yangyang Xin, Xiaoqian Li, Dongdong Yao, Yaping Zheng. Porous liquids and Their Applications in Gas Capture and Separation [J]. Progress in Chemistry, 2021, 33(10): 1874-1886.
[6] Bingqian Huang, Liyan Wang, Xuan Wei, Weichao Xu, Zhen Sun, Tinggang Li. Lignocellulose Pretreatment by Deep Eutectic Solvents for Biobutanol production [J]. Progress in Chemistry, 2020, 32(12): 2034-2048.
[7] Lihua Qian, Guojun Lan, Xiaoyan Liu, Qingfeng Ye, Ying Li. Heterogeneous Catalysts for Biomass-Based Molecules Aqueous-Phase Catalytic Hydrogenation [J]. Progress in Chemistry, 2019, 31(8): 1075-1085.
[8] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Application of Agroforestry Waste Biomass Adsorption Materials in Water Pollution Treatment [J]. Progress in Chemistry, 2019, 31(5): 760-772.
[9] Jianxi Zhao, Panpan Gu, Hui Zeng, Shenglu Deng. Self-Assembly of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2019, 31(5): 643-653.
[10] Jiawei Xie, Xiangwen Zhang, Junjian Xie, Genkuo Nie, Lun Pan, Jijun Zou*. Synthesis of High-Density Jet Fuels from Biomass [J]. Progress in Chemistry, 2018, 30(9): 1424-1433.
[11] Yunchao Feng, Miao Zuo, Xianhai Zeng*, Yong Sun, Xing Tang, Lu Lin*. Preparation of 5-Hydroxymethylfurfural from Glucose [J]. Progress in Chemistry, 2018, 30(2/3): 314-324.
[12] Yong Sun, Xiaoqiang Song, Yong Sun*, Xianhai Zeng, Xing Tang, Lu Lin*. Strategies of Prior-Fractionation for the Graded Utilization of Lignocellulose [J]. Progress in Chemistry, 2017, 29(10): 1273-1284.
[13] Zhao Jianxi. Complicated Reverse Aggregates of Surfactants in Non-Polar Organic Solvents [J]. Progress in Chemistry, 2015, 27(2/3): 168-173.
[14] Fang Mengxiang, Zhou Xuping, Wang Tao, Luo Zhongyang. Solvent Development in CO2 Chemical Absorption [J]. Progress in Chemistry, 2015, 27(12): 1808-1814.
[15] Wang Ailing, Zheng Xueliang, Zhao Zhuangzhi, Li Changping, Zheng Xuefang. Deep Eutectic Solvents to Organic Synthesis [J]. Progress in Chemistry, 2014, 26(05): 784-795.