中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (11): 1591-1600 DOI: 10.7536/PC160630 Previous Articles   Next Articles

• Review and comments •

Micro/Nano Structure Regulation of Donor/Acceptor Interface for High-Performance Organic Solar Cells

Xie Xiang1, Lv Wenzhen1, Chen Runfeng1*, Huang Wei1,2*   

  1. 1. Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing 210023, China;
    2. Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21274065, 21304049).
PDF ( 1149 ) Cited
Export

EndNote

Ris

BibTeX

With apparent advantages of low cost, low weight, high flexibility, high efficiency, and high processability in large size device manufacture, organic solar cells (OSCs) have aroused a great deal of attention in current studies of organic electronics all over the world. Especially, the interface structure investigations of acceptor and donor materials in the active layer of OSCs are of particular attraction due to the great influence of micro/nano structures on the photovoltaic performance. The micro/nano structured donor/acceptor interface leads to the enlarged interface area, the reduced distance between acceptor and donor, and the enhanced sunlight absorption, which are favorable to increase the molecular excitation, promote the efficient charge separation and effective exciton dissociation, produce the continuous paths for efficient charge transport, and finally improve the power conversion efficiency (PCE) in OSC applications. In this review, we summarize the recent development of micro/nano interface structured organic solar cells made by various methods in controlling the structures of donor/acceptor interface through nanoimprint lithography, self-assembly technology, solvent evaporation and template methods. The basic principles of these fabrication techniques in producing various micro/nano interface structures, including nano-textured interface, nano-gratings, nanorods array, nanoparticle mediated layer, rough interface and some special patterns, are discussed in detail with particular attention on the effects of the resulted nanostructures on the photovoltaic performance. Further, the current difficulties and future research directions of the micro/nano-structured OSCs are also discussed to give an outlook of the prospect trends and application potentials in modulating photovoltaic devices for high PCEs.

Contents
1 Introduction
2 Effects of micro/nano structures on photovoltaic properties
3 Methods to construct micro/nano interface structures
3.1 Nanoimprint lithography
3.2 Self-assembly technology
3.3 Solvent evaporation
3.4 Template methods
4 Applications of micro/nano structures on solar cells
4.1 Nano-textured interface
4.2 Nano gratings structure
4.3 Nanorods arrays
4.4 Nanoparticles
4.5 Rough interface
4.6 Special patterns
5 Conclusions and perspectives

CLC Number: 

[1] Luo G, Ren X, Zhang S, Wu H, Choy W C, He Z, Cao Y. Small, 2016, 12(12):1547.
[2] Wang Q, Xie Y, Soltani-Kordshuli F, Eslamian M. Renew. Sust. Energ. Rev., 2016, 56(26):347.
[3] Chen R, Zheng C, Li C, Li H, Wang Z, Tang Y, Jiang H, Tan Z, Huang W. Polym. Chem., 2016, 7(4):780.
[4] 关丽(Guan L),张晓远(Zhang X Y),孙福强(Sun F Q). 化学进展(Progress in Chemistry), 2015, 27(10):1435.
[5] Yusoff A R B M, Kim D, Kim H P, Shneider F K, Da Silva W J, Jang J. Energ. Environ. Sci., 2015, 8(1):303.
[6] Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat. Energ., 2016, 1(2):15027.
[7] 王洪宇(Wang H Y),赖衍帮(Lai Y B),丁益民(Ding Y M). 化学进展(Progress in Chemistry), 2014, 26(10):1673.
[8] Lee D H, Michael Y Y, You J, Richard E, Li G. Nanotechnology, 2014, 25(29):295401.
[9] Lee K H, Schwenn P E, Smith A R G, Cavaye H, Shaw P E, James M, Krueger K B, Gentle I R, Meredith P, Burn P L. Adv. Mater., 2011, 23(6):766.
[10] Stevens D M, Qin Y, Hillmyer M A, Frisbie C D. J. Phys. Chem. C., 2009, 113(26):11408.
[11] Yang H Y, Kang N S, Hong J, Song Y, Kim T W, Lim J A. Org. Electron., 2012, 13(11):2688.
[12] Chen J T, Hsu C H. Polym. Chem., 2011, 11(2):2707.
[13] Thompson B C, Fréchet J M J. Angew. Chem. Int. Edit., 2008, 47(1):58.
[14] Brocks G, Tol A. J. Phys. Chem., 1996, 100(2):1838.
[15] Zhou L, Ou Q, Chen J, Shen S, Tang J, Li Y, Lee S. Sci. Rep., 2014, 12(7):4.
[16] Forberich K, Dennler G, Scharber M C, Hingerl K, Fromherz T, Brabec C J. Thin Solid Films, 2008, 516(20):7167.
[17] Xue J, Cao W. Energ. Environ. Sci., 2014, 11(7):2123.
[18] Chen J, Cui C, Li Y, Zhou L, Ou Q, Li C, Li Y, Tang J. Adv. Mater., 2015, 27(6):1035.
[19] Cho C, Jeong S, Choi H, Shin N, Kim B, Jeon E, Lee J. Adv. Opt. Mater., 2015, 3(12):1697.
[20] Csucs G, Michel R, Lussi J W, Textor M, Danuser G. Biomaterials, 2003, 24(10):1713.
[21] Dunst S, Rath T, Radivo A, Sovernigo E, Tormen M, Amenitsch H, Marmiroli B, Sartori B, Reichmann A, Knall A, Trimmel G. ACS. Appl. Mater. Inter., 2014, 6(10):7633.
[22] Wagner D J, Jayatissa A H. Org. Electron., 2005, 6002(24):60020.
[23] Mrksich M, Whitesides G M. Trends Biotechnol., 1995, 13(6):228.
[24] Zeng W, Chong K S L, Low H Y, Williams E L, Tam T L, Sellinger A. Thin Solid Films, 2009, 517(24):6833.
[25] Yang Y, Mielczarek K, Zakhidov A, Hu W. ACS Appl. Mater. Inter., 2014, 6(21):19282.
[26] Avnon E, Yaacobi-Gross N, Ploshnik E, Shenhar R, Tessler N. Org. Electron., 2011, 12(7):1241.
[27] An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat. Mater., 2015, 14(7):685.
[28] Yuan J, Tang Y, Xu S, Chen R, Huang W. Sci. Bull., 2015, 2(894):1631.
[29] Byeon K J, Lee H. Eur. Phys. J. Appl. Phys., 2012, 59(1):10001.
[30] Lehn B J. Angew. Chem. Int. Edit., 1990, 19(2):1304.
[31] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A P H J. Chem. Rev., 2005, 105(4):1491.
[32] Jukes P C, Heriot S Y, Sharp J S, Jones R A L. Macromolecules, 2005, 38(6):2030.
[33] Heriot S Y, Jones R. Nat. Mater., 2005.27(4):782.
[34] Arias A C, Mackenzie J D, Stevenson R, Halls J J M, Inbasekaran M, Woo E P, Richards D, Friend R H. Macromolecules, 2001, 34(17):6005.
[35] Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv. Funct. Mater., 2007, 17(10):1636.
[36] Cheng H, Lin W, Wu F. Appl. Phys. Lett., 2009, 94(22):223302.
[37] Salim T, Wong L H, Uer B B, Kukreja R, Yong L F. J. Mater. Chem., 2010, 21(1):242.
[38] Chen F, Tseng H, Ko C. Appl. Phys. Lett., 2008, 92(10):103316.
[39] Kekuda D, Lin H, Chyi Wu M, Huang J, Ho K, Chu C. Sol. Energ. Mat. Sol. C., 2011, 95(2):419.
[40] Steinhart M, Wendorff J H, Greiner A. Wehrspohn R B, Nielsch K, Schilling J, Choi J, Gösele U. Science, 2002, 292(14):117.
[41] Steinhart M, Wehrspohn R B, Gösele U, Wendorff J H. Angew. Chem. Int. Edit., 2004, 43(11):1334.
[42] Chen D, Chen J, Glogowski E, Emrick T, Russell T P. Macromol. Rap. Comm., 2009, 12(30):377.
[43] Masuda H, Fukuda K. Science, 1995, 9(268):1466.
[44] Haberkorn N, Weber S A L, Berger R, Theato P. ACS Appl. Mater. Inter., 2010, 2(6):1573.
[45] Yang Y, Mielczarek K, Zakhidov A, Hu W. ACS Appl. Mater. Inter., 2016, 8(11):7300.
[46] Mayer J, Gallinet B, Offermans T, Ferrini R. Opt. Exp., 2016, 24(2):A358.
[47] Wang H, Lin L, Chen S, Wang Y, Wei K. Nanotechnology, 2009, 20(7):75201.
[48] Kim J S, Park Y, Lee D Y, Lee J H, Park J H, Kim J K, Cho K. Adv. Funct. Mater., 2010, 20(4):540.
[49] Chang C, Wu C, Chen S, Cui C, Cheng Y, Hsu C, Wang Y, Li Y. Angew. Chem. Int. Edit., 2011, 50(40):9386.
[50] Chen D, Zhao W, Russell T P. ACS Nano, 2012, 6(2):1479.
[51] Ulum S, Holmes N, Barr M, Kilcoyne A L D, Gong B B, Zhou X, Belcher W, Dastoor P. Nano Energy, 2013, 2(5):897.
[52] Gärtner S, Christmann M, Sankaran S, Röhm H, Prinz E, Penth F, Pütz A, Türeli A E, Penth B, Baumstümmler B, Colsmann A. Adv. Mater., 2014, 26(38):6653.
[53] Rtner S G, Reich S, Bruns M, Czolk J, Colsmann A. Nanoscale, 2016, 8(12):6721.
[54] Vaughan B, Williams E L, Holmes N P, Sonar P, Dodabalapur A, Dastoor P C, Belcher W J. Phys Chem. Chem. Phys., 2014, 16(6):2647.
[55] Reyes-Reyes M, López-Sandoval R, Liu J, Carroll D L. Sol. Energ. Mat. Sol. C., 2007, 91(15/16):1478.
[56] Stapleton A, Vaughan B, Xue B, Sesa E, Burke K, Zhou X, Bryant G, Werzer O, Nelson A, David Kilcoyne A L, Thomsen L, Wanless E, Belcher W, Dastoor P. Sol. Energ. Mat. Sol. C., 2012, 102(2):114.
[57] Holmes N P, Nicolaidis N, Feron K, Barr M, Burke K B, Al-Mudhaffer M, Sista P, Kilcoyne A L D, Stefan M C, Zhou X, Dastoor P C, Belcher W J. Sol. Energ. Mat. Sol. C., 2015, 140(4):412.
[58] Dam H F, Holmes N P, Andersen T R, Larsen-Olsen T T, Barr M, Kilcoyne A L D, Zhou X, Dastoor P C, Krebs F C, Belcher W J. Sol. Energ. Mat. Sol. C., 2015, 138(6):102.
[59] Holmes N P, Ulum S, Sista P, Burke K B, Wilson M G, Stefan M C, Zhou X, Dastoor P C, Belcher W J. Sol. Energ. Mat. Sol. C., 2014, 128(8):369.
[60] Holmes N P, Marks M, Kumar P, Kroon R, Barr M G, Nicolaidis N, Feron K, Pivrikas A, Fahy A, Mendaza A D D Z, Kilcoyne A L D, Müller C, Zhou X, Andersson M R, Dastoor P C, Belcher W J. Nano Energy, 2016, 19(13):495.
[61] Lee D H, Michael Y Y, You J, Richard E, Li G. Nanotechnology, 2014, 25(29):295401.
[62] Seok J, Shin T J, Park S, Cho C, Lee J, Yeol Ryu D, Kim M H, Kim K. Sci. Rep., 2015, 5(44):8373.
[63] Vohra V, Rling B D, Higashimine K, Murata H. Appl. Phys. Exp., 2016,6(16):012301-1.
[64] van Franeker J J, Kouijzer S, Lou X, Turbiez M, Wienk M M, Janssen R A J. Adv. Energy. Mater., 2015, 5(14):1500464.
[65] Aguirre J C, Hawks S A, Ferreira A S, Yee P, Subramaniyan S, Jenekhe S A, Tolbert S H, Schwartz B J. Adv. Energy. Mater., 2015, 5(11):1402020.
[66] Khaleque T, Svavarsson H G, Magnusson R. Opt. Exp., 2013, 21(S4):A631.
[67] Atwater H A, Polman A. Nat. Mater., 2010, 9(3):205.
[68] Khaleque T, Svavarsson H G, Magnusson R. Opt. Exp., 2013, 21(S4):A631.
[69] Atwater H A, Polman A. Nat. Mater., 2010, 9(3):205.
[70] Chen J, Yu M, Chang C, Chao Y, Sun K W, Hsu C. ACS Appl. Mater. Inter., 2014, 6(9):6164.
[71] He Z, Zhong C, Huang X, Wong W, Wu H, Chen L, Su S, Cao Y. Adv. Mater., 2011, 23(40):4636.
[72] Xu J, Hu Z, Zhang K, Huang L, Zhang J, Zhu Y. Energ. Technol., 2016, 4(2):314.
[1] Chaolumen Xue, Wanru Liu, Tuya Bai, Mingmei Han, Ren Sha, Chuanlang Zhan. Recent Progress on Solar Cell Performance Based on Structural Tailoring on DA'D Units of Nonfullerene Acceptors [J]. Progress in Chemistry, 2022, 34(2): 447-459.
[2] Yuxaun Du, Tao Jiang, Meijia Chang, Haojie Rong, Huanhuan Gao, Yu Shang. Research Progress of Materials and Devices for Organic Photovoltaics Based on Non-Fused Ring Electron Acceptors [J]. Progress in Chemistry, 2022, 34(12): 2715-2728.
[3] Jinkai Xu, Qianqian Cai, Zhanjiang Yu, Zhongxu Lian, Jiwen Tian, Huadong Yu. Fabrication and Application of Metal-Based Slippery Liquid-Infused Porous Surface [J]. Progress in Chemistry, 2021, 33(6): 958-974.
[4] Xiang Xu, Kun Li, Qingya Wei, Jun Yuan, Yingping Zou. Organic Solar Cells Based on Non-Fullerene Small Molecular Acceptor Y6 [J]. Progress in Chemistry, 2021, 33(2): 165-178.
[5] Zhaoqi Shen, Jingzhao Cheng, Xiaofeng Zhang, Weiya Huang, Herui Wen, Shiyong Liu. P3HT/Non-Fullerene Acceptors Heterojunction Organic Solar Cells [J]. Progress in Chemistry, 2019, 31(9): 1221-1237.
[6] Xueyan Shan, Shimao Wang, Gang Meng, Xiaodong Fang. Interface Engineering of Electron Transport Layer/Light Absorption Layer of Perovskite Solar Cells [J]. Progress in Chemistry, 2019, 31(5): 714-722.
[7] Yang Wu, Zaiyu Wang, Xiangyi Meng, Wei Ma. Morphology Analysis of Organic Solar Cells with Synchrotron Radiation Based Resonant Soft X-Ray Scattering [J]. Progress in Chemistry, 2017, 29(1): 93-101.
[8] Li Yanping, Yu Huangzhong, Dong Yifan, Huang Xinxin. Anode Interface Modification of Organic Solar Cells with Solution-Prepared MoO3 [J]. Progress in Chemistry, 2016, 28(8): 1170-1185.
[9] Song Chengjie, Wang Erjing, Dong Binghai, Wang Shimin. Non-Fullerene Organic Small Molecule Acceptor Materials [J]. Progress in Chemistry, 2015, 27(12): 1754-1763.
[10] An Guangming, Ling Shiquan, Wang Zhiwei, Luan Lin, Wu Tianzhun. Fabrication and Application of Ultra-Slippery Surfaces Based on Liquid Infusion in Micro/Nano Structure [J]. Progress in Chemistry, 2015, 27(12): 1705-1713.
[11] Yang Lei, Cheng Tao, Zeng Wenjin, Lai Wenyong, Huang Wei. Inkjet-Printed Conductive Polymer Films for Optoelectronic Devices [J]. Progress in Chemistry, 2015, 27(11): 1615-1627.
[12] Guan Li, Zhang Xiaoyuan, Sun Fuqiang, Jiang Yue, Zhong Yiping, Liu Ping. Oligothiophene Derivatives in Organic Photovoltaic Devices [J]. Progress in Chemistry, 2015, 27(10): 1435-1447.
[13] Lai Yanbang, Ding Yimin, Wang Hongyu. Structural Modification of Benzo [1,2-b:4,5-b’] dithiophene and Application in Organic Photovoltaic Materials [J]. Progress in Chemistry, 2014, 26(10): 1673-1689.
[14] Zhenkun Hu,Minzhao Xue*,Yangang Liu. Progress in Preparation and Applications of Nanocolorants [J]. Progress in Chemistry, 2006, 18(01): 66-73.