中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1426-1434 DOI: 10.7536/PC160224 Previous Articles   Next Articles

• Review and comments •

Application of Glycerol in Microbial Biosynthesis and Biocatalysis

Sun Jia, Wang Pu*, Zhang Pengpeng, Huang Jin   

  1. College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21676250), and the Zhejiang Provincial Natural Science Foundation of China (No. LY16B060010).
PDF ( 2720 ) Cited
Export

EndNote

Ris

BibTeX

Renewable biodiesel is a widely accepted energy for its alternative use of petroleum diesel. Glycerol is an inevitable byproduct of biodiesel production. With the vigorous development of biodiesel industry, there is an obvious oversupply of glycerol. This over-generated green resource urgently needs further exploration for the sustainable new applications, which is critical to the development of biodiesel industry and is in accordance with the demands of green chemistry. In recent years, glycerol has become one of the most important raw material for the production of high value-added chemicals. Moreover, based on its special physicochemical properties, as well as degradability and good biocompatibility, glycerol plays an increasingly important role in biocatalysis and can be used as a new green solvent. This paper mainly reviews the progress on glycerol for industrial biotechnology application in microbial fermentation, biosynthesis and green solvent. Some practical application problems involved in glycerol biotransformation, such as feedstock quality and microbial utilization efficiency, are also discussed in detail. The future application development of glycerol in biocatalysis is also prospected.

Contents
1 Introduction
2 Glycerol uptake and intracellular metabolism
3 Glycerol for microbial growth
4 Glycerol-based raw material for biotransformation
4.1 Glycerol to value-added chemicals
4.2 Solution to the inhibition of high glycerol concentration
4.3 Strategy for biotransformation efficiency
4.4 Bioconversion of crude glycerol
5 Application of glycerol in biocatalysis
5.1 Biocompatibility of glycerol
5.2 Application in asymmetric bioreduction
5.3 Glycerol as green solvent
5.4 Glycerol to deep eutectic solvents (DESs)
6 Conclusion

CLC Number: 

[1] Okoye P U, Hameed B H. Renew. Sust. Energ. Rev., 2016, 53:558.
[2] Ye X P, Ren S J. Soy-Based Chemicals and Materials. Knoxville:ACS Symposium Series, 2014.
[3] Yang F X, Hanna M A, Sun R C. Biotechnol. Biofuels, 2012, 5:13.
[4] García J I, García-Marín H, Pires E. Green Chem., 2014, 16:1007.
[5] Zhou C H, Beltramini J B, Fan Y X, Lu G Q. Chem. Soc. Rev., 2008, 37:527.
[6] Wolfson A, Snezhko A, Meyouhas T, Tavor D. Green Chem. Lett. Rev., 2012, 5(1):7.
[7] Díaz-Álvarez A E, Francos J, Lastra-Barreira B, Crochet P, Cadierno C. Chem. Commun., 2011, 47:6208.
[8] Wolfson A, Dlugy C, Shotland Y, Tavor D. Tetrahedron Lett., 2009, 50:5951.
[9] Azua A, Mata J A, Eduardo P E. Organometallics, 2011, 30(20):5532.
[10] Azua A, Mata J A, Peris E, Lamaty F, Martinez J, Colacino E. Organometallics, 2012, 31(10):3911.
[11] Gu Y L, Jérôme F. Green Chem., 2010, 12:1127.
[12] Feng S, Yan Y B. Proteins, 2008, 71:844.
[13] Bhaganna P, Bielecka A, Molinari G, Hallsworth J. E. Curr. Genet., 2015, DOI:10.1007/s00294-015-0539-1.
[14] Fields P A, Wahlstrand B D, Somero G N. Eur. J. Biochem., 2001, 268:4497.
[15] Wang Z X, Zhuge J, Fang H Y, Prior B A. Biotechnol. Adv., 2001, 19:201.
[16] Silva G P D, Mack M, Contiero J. Biotechnol. Adv., 2009, 27:30.
[17] Rodriguez A, Wojtusik M, Ripoll V, Santos V E, Garcia-Ochoa F. Bioresource Technol., 2016, 200:830.
[18] Jiang W, Wang S Z, Wang Y P, Fang B S. Biotechnol. Biofuels, 2016, 9:57.
[19] Easterling E R, French W T, Hernandez R, Licha M. Bioresource Technol., 2009, 100:356.
[20] Alvarez M de F, Medina R, Pasteris S E, Strasser de Saad A M, Sesma F. J. Mol. Microbiol. Biotechnol., 2004, 7:170.
[21] Zhou X, Zhou X L, Xu Y, Yu S Y. Bioproc. Biosyst. Eng., 2016, 39(8):1315.
[22] Ringel A K, Wilkens E, Hortig D, Willke T, Vorlop K D. Appl. Microbiol. Biotechnol., 2012, 93:1049.
[23] Dobson R, Gray V, Rumbold K. J. Ind. Microbiol. Biotechnol., 2012, 39:217.
[24] Clomburg J M, Gonzalez R. Trends Biotechnol., 2013, 31(1):20.
[25] Dro?d?yńska A, Pawlicka J, Kubiak P, Ko Ds' mider A, Pranke D, Olejnik-Schmidt A, Czaczyk K. New Biotechnol., 2014, 31(5):402.
[26] Wilkens E, Ringel A K, Hortig D, Willke T, Vorlop K D. Appl. Microbiol. Biotechnol., 2012, 93:1057.
[27] Dharmadi Y, Murarka A, Gonzalez R. Biotechnol. Bioeng., 2006, 94:821
[28] Rodriguez A, Wojtusik M, Ripoll V, Santos V E, Garcia-Ochoa F. Bioresource Technol., 2016, 200:830.
[29] Xu Y Z, Guo N N, Zheng Z M, Ou X J, Liu H J, Liu D H. Biotechnol. Bioeng., 2009, 104(5):965.
[30] Tang X M, Tan Y S, Zhu H, Zhao K, Shen W. Appl. Environ. Microb., 2009, 75(6):1628.
[31] Silva G P D, Cristian J, Lima C J B D, Contiero J. Catal. Today, 2015, 257:259.
[32] Kaeding T, DaLuz J, Kube J, Zeng A P. Bioproc. Biosyst. Eng., 2015, 38(3):575.
[33] Zheng X J, Jin K Q, Zhang L, Wang G, Liu Y P. Braz. J. Microbiol., 2016, 47:129.
[34] Li M H, Wu J, Liu X, Lin J P, Wei D Z, Chen H. Bioresource Technol., 2010, 101:8294.
[35] Cho S, Kim T, Woo H M, Kim Y, Lee J, Um Y. Biotechnol. Biofuels., 2015,8:146.
[36] Yang T W, Rao Z M, Zhang X, Xu M J, Xu Z H, Yang S T. Microb. Cell Fact., 2015, 14:122.
[37] Ahn J H, Sang B I, Um Y. Bioresource Technol., 2011, 102:4934.
[38] Malaviya A, Jang Y S, Lee S Y. Appl. Microbiol. Biot., 2012, 93(4):1485.
[39] Wang Q, Yang P, Liu C S, Xue Y C, Xian M, Zhao G. Bioresource Technol., 2013, 131:548.
[40] Kamzolova S V, Fatykhova A R, Dedyukhina E G, Anastassiadis S G, Golovchenko N P, Morgunov I G. Food Technol. Biotechnol., 2011, 49(1):65.
[41] Scholten E, Renz T, Thomas J. Biotechnol. Lett., 2009, 31:1947.
[42] Vlysidis A, Binns M, Webb C, Theodoropoulos C. Biochem. Eng. J., 2011, 58/59:1.
[43] Zhu Y F, Li J H, Tan M, Liu L, Jiang L L, Sun J, Lee P, Du G C, Chen J. Bioresource Technol., 2010, 101:8902.
[44] Murakami N, Oba M, Iwamoto M, Tashiro Y, Noguchi T, Bonkohara K, Abdel-Rahman M A, Zendo T, Shimoda M, Sakai K, Sonomoto K. J. Biosci. Bioeng., 2016, 121(1):89.
[45] Habe H, Shimada Y, Yakushi T, Hattori H, Ano Y, Fukuoka T, Kitamoto D, Itagaki M, Watanabe K, Yanagishita H, Matsushita K, Sakaki K. Appl. Environ. Microb., 2009, 75:7760.
[46] Dounavisa A S, Ntaikoua I, Lyberatos G. Bioresource Technol., 2015, 198:701.
[47] Nwachukwu R E S, Shahbazi A, Wang L, Ibrahim S, Worku M, Schimmel K. AMB Express, 2012, 2:20.
[48] Gao C, Li Z, Zhang L J, Wang C, Li K, Ma C Q, Xu P. Green Chem., 2015, 17:804
[49] Raška J, Skopal F, Komers K, Machek J. Collect. Czech. Chem. Commun., 2007, 72:1269.
[50] Cheng K K, Zhang J A, Liu D H, Sun Y, Liu H J, Yang M D, Xu J M. Process Biochem., 2007, 42:740.
[51] Jensen T Ø, Kvist T, Mikkelsen M J, Westermann P. AMB Express, 2012, 2:44.
[52] Zhou P P, Zhang Y, Wang P X, Xie J L, Ye Q. Ann. Microbiol., 2014, 64:219.
[53] Samul D, Leja K, Grajek W. Ann. Microbiol., 2014, 64:891.
[54] Ardi M S, Aroua M K, Hashim N A. Renew. Sust. Energ. Rev., 2015, 42:1164.
[55] Jun S A, Moon C, Kang C H, Kong S W, Sang B I, Um Y. Appl. Biochem. Biotechnol., 2010, 161:491.
[56] Hubálek Z. Cryobiology, 2003, 46:205.
[57] Gekkot K, Timasheff S N. Biochemistry, 1981, 20:4667.
[58] Chen S, Land H, Berglund P, Humble M S. J. Mol. Catal. B:Enzym., 2016, 124:20.
[59] Torrelo G, Hanefeld U, Hollmann F. Catal. Lett., 2015, 145:309.
[60] Ni Y, Xu J H. Biotechnol. Adv., 2012, 30:1279.
[61] Hilker I, Gutiérrez M C, Furstoss R, Ward J, Wohlgemuth R, Alphand V. Nat. Protoc., 2008, 3:546.
[62] Hao G, Chen H Q, Gu Z N, Zhang H, Chen W, Chen Y Q. Microb. Cell Fact., 2015, 14:205.
[63] Beltrán-Prieto J C, Kolomazník K, Pecha J. Aust. J. Chem., 2013, 66:511.
[64] Zhang Y, Gao F, Zhang S P, Su Z G, Ma G H, Wang P. Bioresource Technol., 2011, 102:1837.
[65] Rocha-Martin J, Acosta A, Guisan J M, López-Gallego F. ChemCatChem, 2015, 7:1939.
[66] Taketomi S, Asano M, Higashi T, Shoji M, Sugai T. J. Mol. Catal. B:Enzym., 2012, 84:83.
[67] Wang S S, Xu Y, Zhang R Z, Zhang B T, Xiao R. Process Biochem., 2012, 47:1060.
[68] Li J, Wang P, He J Y, Huang J, Tang J. Appl. Microbiol. Biotechnol., 2013, 97:6685.
[69] 王普(Wang P), 黄金(Huang J), 丁徐中(Ding X Z). CN104893989A, 2015.
[70] Nemati F, Hosseini M M, Kiani H. J. Saudi. Chem. Soc., 2013, DOI:10.1016/j.jscs.2013. 02.004.
[71] Hernáiz M J, Alcántara A R, García J I, Sinisterra J V. Chem.-Eur. J., 2010, 16:9422.
[72] Wolfson A, Dlugy C, Tavor D, Blumenfeld J, Shotland Y. Tetrahedron-Asymmetry, 2006, 17:2043.
[73] Andrade L H, Piovan L, Pasquini M D. Tetrahedron-Asymmetry, 2009, 20:1521.
[74] Cheng C, Nian Y C. J. Mol. Catal. B:Enzym., 2016, 123:141.
[75] Li J, Wang P, Huang J, Sun J. Bioresource Technol., 2015, 175:42.
[76] Wang N Q, Li J, Sun J, Huang J, Wang P. Biochem. Eng. J., 2015, 101:119.
[77] Smith E L, Abbott A P, Ryder K S. Chem. Rev., 2014, 114:11060.
[78] Müller C R, Lavandera I, Gotor-Fernández V, María P D D. ChemCatChem, 2015, 7:2654.
[79] Bewley B R, Berkaliev A, Henriksen H, Ball D B, Ott L S. Fuel Process Technol., 2015, 138:419.
[80] Maugeri Z, María P D D. ChemCatChem, 2014, 6:1535.
[81] Zhao H, Baker G A, Holmes S. J. Mol. Catal. B:Enzym., 2011, 72:163.
[82] Xu P, Cheng J, Lou W Y, Zong M H. RSC Adv., 2015, 5:6357.
[83] Tian X M, Zhang S Q, Zheng L Y. J. Microbiol. Biotechnol., 2016, 26:80.
[1] Kelong Fan, Lizeng Gao, Hui Wei, Bing Jiang, Daji Wang, Ruofei Zhang, Jiuyang He, Xiangqin Meng, Zhuoran Wang, Huizhen Fan, Tao Wen, Demin Duan, Lei Chen, Wei Jiang, Yu Lu, Bing Jiang, Yonghua Wei, Wei Li, Ye Yuan, Haijiao Dong, Lu Zhang, Chaoyi Hong, Zixia Zhang, Miaomiao Cheng, Xin Geng, Tongyang Hou, Yaxin Hou, Jianru Li, Guoheng Tang, Yue Zhao, Hanqing Zhao, Shuai Zhang, Jiaying Xie, Zijun Zhou, Jinsong Ren, Xinglu Huang, Xingfa Gao, Minmin Liang, Yu Zhang, Haiyan Xu, Xiaogang Qu, Xiyun Yan. Nanozymes [J]. Progress in Chemistry, 2023, 35(1): 1-87.
[2] Jiqian Wang*, Hongyu Yan, Jie Li, Liyan Zhang, Yurong Zhao, Hai Xu*. Artificial Metalloenzymes Based on Peptide Self-Assembly [J]. Progress in Chemistry, 2018, 30(8): 1121-1132.
[3] Dongya Bai, Junyao He, Bin Ouyang, Jin Huang, Pu Wang. Biocatalytic Asymmetric Synthesis of Chiral Aryl Alcohols [J]. Progress in Chemistry, 2017, 29(5): 491-501.
[4] Hua Donglong, Zhuang Xiaoyu, Tong Dongshen, Yu Weihua, Zhou Chunhui. Catalytic Oxidehydration of Glycerol to Acrylic Acid [J]. Progress in Chemistry, 2016, 28(2/3): 375-390.
[5] Zhao Yanan, Wang Mengfan, Qi Wei, Su Rongxin, He Zhimin. Supramolecular Artificial Enzyme Based on Assembling Peptide Gel [J]. Progress in Chemistry, 2016, 28(11): 1664-1671.
[6] Gong Jinsong, Li Heng, Lu Zhenming, Shi Jinsong, Xu Zhenghong. Recent Progress in the Application of Nitrilase in the Biocatalytic Synthesis of Pharmaceutical Intermediates [J]. Progress in Chemistry, 2015, 27(4): 448-458.
[7] Feng Xudong, Li Chun. The Improvement of Enzyme Properties and Its Catalytic Engineering Strategy [J]. Progress in Chemistry, 2015, 27(11): 1649-1657.
[8] Shen Gangyi, Yu Wanting, Liu Meirong, Cui Xun. Preparation and Application of Immobilized Enzyme Micro-Reactor [J]. Progress in Chemistry, 2013, 25(07): 1198-1207.
[9] Yan Fanyong, Li Chuying, Liang Xiaole, Dai Linfeng, Wang Meng, Chen Li*. Different Catalyst Systems for Baeyer-Villiger Reaction [J]. Progress in Chemistry, 2013, 25(06): 900-914.
[10] Zhang Fang, Cheng Lihua, Xu Xinhua, Zhang Lin, Chen Huanlin. Technologies of Microalgal Harvesting and Lipid Extraction [J]. Progress in Chemistry, 2012, (10): 2062-2072.
[11] Feng Guodong, Cheng Lihua, Xu Xinhua, Zhang Lin, Chen Huanlin. Strategies in Genetic Engineering of Microalgae for High-Lipid Production [J]. Progress in Chemistry, 2012, 24(07): 1413-1426.
[12] Liu Xiang, Pan Zhengguang, Xu Jianhe. Asymmetric Synthesis of Chiral Aryl Vicinal Diols [J]. Progress in Chemistry, 2011, 23(5): 903-913.
[13] Wang Dexian, Wang Meixiang. Biotransformations of Three-Membered (Hetero) Cyclic Nitriles and Their Applications in Organic Synthesis [J]. Progress in Chemistry, 2010, 22(07): 1397-1402.
[14] Wu Suxiang Fan Honglei Cheng Yan Wang Qian Han Buxing. Catalytic Organic Reactions in CO2/H2O Medium [J]. Progress in Chemistry, 2010, 22(07): 1286-1294.
[15] . Advances on Technology of Microalgal High-lipid Production [J]. Progress in Chemistry, 2010, 22(06): 1221-1232.