中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (9): 1351-1362 DOI: 10.7536/PC160326 Previous Articles   Next Articles

Special Issue: 电化学有机合成

• Review and comments •

Electrochemiluminescence Analysis Based on Molecular Imprinting Technique

Yang Yukun1,2, Wang Xiaomin1,2, Fang Guozhen1,2, Yun Yaguang1,2, Guo Ting1,2, Wang Shuo1,2*   

  1. 1. Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin 300457, China;
    2. College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31171683).
PDF ( 516 ) Cited
Export

EndNote

Ris

BibTeX

Electrochemiluminescence (ECL) analysis based on molecular imprinting technique, as a new analysis method, has made great progress in recent years. Molecular imprinted ECL analysis owns the advantages of both ECL analysis and molecular imprinting technology, namely high sensitivity, high selectivity, good controllability, easy miniaturization and simple operation, suggesting a wide range of applications in the fields of life sciences, food safety and environmental monitoring. In this review, the common ECL systems and basic ECL principles are introduced in detail, and the research advances of molecular imprinted ECL analysis are reviewed. The ECL mechanism mainly includes annihilation type ECL mechanism and co-reactant type ECL mechanism, examples based on ECL mechanism are introduced. Construction procedure, principles and performance of different types of molecular imprinted ECL analysis, including sensitivity, selectivity, detection range and stability of the established methods, are remarked extensively. The development of molecular imprinted polymers (MIPs)-based ECL analysis could be divided into three types:MIPs-ECL sensor based on solid-state light-emitting electrode, MIPs-ECL sensor based on non-solid-state light-emitting electrode and MIPs based-solid phase extraction coupled with ECL analysis. Among the three types mentioned above, the fabrication of solid-state light-emitting electrode to establish molecular imprinted ECL sensor is the most promising direction, in which the organic combination of ECL light-emitting materials and molecular imprinted material is achieved. In addition, the outlook of future development directions and trends of molecular imprinted ECL analysis are discussed.

Contents
1 Introduction
2 Common ECL system and ECL mechanism
2.1 Annihilation type ECL mechanism
2.2 Co-reactant type ECL mechanism
3 Research advances of MIPs-based ECL analysis
3.1 MIPs-ECL sensor based on solid-state light-emitting electrode
3.2 MIPs-ECL sensor based on non-solid-state Light-emitting electrode
3.3 MIPs based-solid phase extraction coupled with ECL
4 Conclusion

CLC Number: 

[1] Richter M M. Chem. Rev., 2004, 104:3003.
[2] Miao W. Chem. Rev., 2008, 108:2506.
[3] Hu L, Xu G. Chem. Soc. Rev., 2010, 39:3275.
[4] Forster R J, P. Bertoncello and T. E. Keyes, Ann. Rev. Anal. Chem., 2009, 2:359.
[5] Muzyka K. Biosens. Bioelectron., 2014, 54:393.
[6] 李云辉(Li Y H). 吉林大学博士论文(Doctoral Dissertation of Jilin University), 2006.
[7] 周敏(Zhou M). 西北师范大学博士论文(Doctoral Dissertation of Northwest Normal University), 2007.
[8] 郑立炎(Zheng L Y). 福州大学博士论文(Doctoral Dissertation of Fuzhou University), 2011.
[9] 陈国南(Chen G N), 林振宇(Lin Z Y). 世界科技研究与发展(World Sci-Tech R & D), 2004, 26:66.
[10] 陈国南(Chen G N),吴元兴(Wu Y X),段建平(Duan J P),张帆(Zhang F). 福州大学学报(自然科学版)(Journal of Fuzhou University (Natural Science Edition)), 1999, 27:1.
[11] Liu Z, Qi W, Xu G. Chem. Soc. Rev., 2015, 44:3117.
[12] Pauling L, Campbell D H. J. Exp. Med., 1942, 76:211.
[13] G. Wulff, Sarhan A. Angew. Chem. Int. Edit., 1972, 11(4):341.
[14] Vlatakis G, Andersson L I, Müller R, Mosbach K. Nature, 1993, 361:645.
[15] 张丽芬(Zhang L F), 曲靖师范学院学报(Journal of Qujing Normal University), 2005, 24(3):14.
[16] Pichon V, Chapuis-Hugon F. Anal. Chim. Acta, 2008, 622:48.
[17] 方国臻(Fang G Z). 南开大学博士论文(Doctoral Dissertation of Nankai University), 2005.
[18] 马雄辉(Ma X H), 李建平(Li J P), 王超(Wang C), 徐国宝(Xu G B). 分析化学(Chinese J. Anal. Chem.), 2016, 44:152.
[19] Guo Z, Gai P, Hao T, Duan J, Wang S. J. Agr. Food Chem., 2011, 59:5257.
[20] Li S P, Guan H M, Xu G B, Tong Y J. Chinese J. Anal. Chem., 2015, 43:294.
[21] Kowalski S, Allard S, Scherf U. ACS Macro Lett., 2012, 1:465.
[22] Chu H, Guo W, Di J, Wu Y, Tu Y. Electroanal., 2009, 21:1630.
[23] Qiu B, Zhu X, Liu Y, Lin Z, Chen G. Electrochem. Commun., 2009, 11:254.
[24] Li J, Yang L, Luo S, Chen B, Li J, Lin H, Cai Q, Yao S. Anal. Chem., 2010, 82:7357.
[25] Chen X, Li M, Yi C, Tao Y, Wang X. Chromatographia, 2003, 58:571.
[26] Sun X, DuY, Zhang L, Dong S, Wang E. Anal. Chem., 2007, 79:2588.
[27] Liu X, Jiang H, Lei J, Ju H. Anal. Chem., 2007, 79:8055.
[28] Liu X, Ju H. Anal. Chem., 2008, 80:5377.
[29] Chang M M, Saji T, Bard A J. J. Am. Chem. Soc., 1977, 99:5399.
[30] Rubinstein I, Bard A J. J. Am. Chem. Soc., 1981, 103:512.
[31] White H S, Bard A J. J. Am. Chem. Soc., 1982, 104:6891.
[32] Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S. Sensor. Actuat. B-Chem., 2016, 222:264.
[33] Han C F, Shang Z Y, Zhang H H, Song Q J. Anal. Methods-UK, 2013, 5:6064.
[34] Shang Z Y, Han C F, Song Q J. Chinese J. Anal. Chem., 2014, 42:904.
[35] Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X. Analyst, 2012, 137:3644.
[36] Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S. Biosens Bioelectron., 2016, 79:561.
[37] Feng X, Gan N, Zhou J, Li T, Cao Y, Hu F, Yu H, Jiang Q. Electrochim. Acta, 2014, 139:127.
[38] Zhou J, Gan N, Hu F, Li T, Zhou H, Li X, Zheng L. Sensor. Actuat. B-Chem., 2013, 186:300.
[39] Chen S, Li A, Zhang L, Gong J. Anal. Chim. Acta, 2015, 896:68.
[40] Li S, Li J, Lin Q, Wei X. Analyst, 2015, 140:4702.
[41] Yang Y, Fang G, Wang X, Liu G, Wang S. Biosens. Bioelectron., 2016, 77:1134.
[42] Li J, Ma F, Wei X, Fu C, Pan H. Anal. Chim. Acta, 2015, 871:51.
[43] 魏小平(Wei X P), 谭艳季(Tan J P), 李建平(Li J P). 分析化学(Chinese Journal of Analytical Chemistry), 2015, 43:424.
[44] Li X, Li J, Yin W, Zhang L. J. Solid State Electr., 2014, 18:1815.
[45] Li H, Xie C, Fu X. Sensor. Actuat. B-Chem., 2013, 181:858.
[46] Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L. Biosens. Bioelectron., 2014, 54:199.
[47] Li J, Li S, Wei X, Tao H, Pan H. Anal. Chem., 2012, 84:9951.
[48] Li S, Tao H, Li J. Electroanal., 2012, 24:1664.
[49] Jiang X, Ding W, Luan C. Can. J. Chem., 2013, 91:656.
[50] Wang S, Wei J, Hao T, Guo Z. J. Electroanal. Chem., 2012, 664:146.
[51] B Huang, Zhou X, Chen J, G Wu, Lu X. Talanta, 2015, 142:228.
[52] Guo Z, Hao T, Shi L, Gai P, Duan J, Wang S, Gan N. Food Chem., 2012, 132:1092.
[53] 郝婷婷(Hao T T), 谢文婷(Xie W T), 李琴芬(Li Q F), 郭志勇(Guo Z Y). 分析试验室(Chinese Journal of Analysis Laboratory), 2012, 31(002):105.
[54] Lu J, Ge S, F Wan, Yu J. J. Sep. Sci., 2012, 35:320.
[1] Yu Lin, Xuecai Tan, Yeyu Wu, Fucun Wei, Jiawen Wu, Panpan Ou. Two-Dimensional Nanomaterial g-C3N4 in Application of Electrochemiluminescence [J]. Progress in Chemistry, 2022, 34(4): 898-908.
[2] Huipeng Hou, Axin Liang, Bo Tang, Zongkun Liu, Aiqin Luo. Fabrication and Application of Photonic Crystal Biochemical Sensor [J]. Progress in Chemistry, 2021, 33(7): 1126-1137.
[3] Bo Li, Lijian Ma, Ning Luo, Shoujian Li, Yunming Chen, Jinsong Zhang. Extraction and Separation of Uranium via Solid Phase Extraction [J]. Progress in Chemistry, 2020, 32(9): 1316-1333.
[4] Liangrong Yang, Huifang Xing, Hongnan Qu, Jiemiao Yu, Huizhou Liu. External Field Enhanced Environmental Responsive Solid Extraction Technology [J]. Progress in Chemistry, 2019, 31(11): 1615-1622.
[5] Jie Guan, Lingna Sun, Qin Xu*, Xiaoya Hu*. Synthesis and Application of Molecularly Imprinted Polymers Based on Titanium Dioxide and Its Composites [J]. Progress in Chemistry, 2018, 30(11): 1749-1760.
[6] Zhu Debin*, Ma Wenge, Xing Xiaobo . Application of Electrochemiluminescence Assay in Nucleic Acid Detection [J]. Progress in Chemistry, 2012, 24(12): 2367-2373.
[7] Xu Zhigang, Liu Zhimin, Yang Baomin, Zi Futing. Development of Dummy Template Molecularly Imprinted Techniques in Sample Pretreatment [J]. Progress in Chemistry, 2012, 24(08): 1592-1598.
[8] Luo Feng, Lin Zhijie, Chen Xi. Novel Materials and Approaches for Electrochemiluminescence Studies [J]. Progress in Chemistry, 2011, 23(12): 2588-2597.
[9] Chen Yiting, Huang Lu, Lin Qi. The Application of Heated Electrodes in Electrochemical Sensors [J]. Progress in Chemistry, 2011, 23(11): 2377-2388.
[10] Zhang Hui, He Hua, Li Jie, Li Hui, Yao Yuyang. Water-Compatible Molecular Imprinting Separation Technique and Its Application in Analytical Chemistry [J]. Progress in Chemistry, 2011, 23(10): 2140-2150.
[11] . Molecularly Imprinted Functional Materials Based on Polysaccharides [J]. Progress in Chemistry, 2010, 22(11): 2165-2172.
[12] . Preparation and Application of Core-shell Magnetic Molecularly Imprinted Polymer Microspheres [J]. Progress in Chemistry, 2010, 22(09): 1819-1825.
[13] . Molecular Imprinting Technology Based on Cyclodextrins [J]. Progress in Chemistry, 2010, 22(05): 888-897.
[14] Liu Yong Shu Yuanjie Liu Xueyong Xiong Ying Zhong Fachun Sun Yi. Application of Molecular Imprinting and Fluorescence Analysis Techniques in Explosive Detection [J]. Progress in Chemistry, 2009, 21(12): 2712-2717.
[15] Si Bianjing Chen Changbao Zhou Jie. New-Generation Molecular Imprinting Technique [J]. Progress in Chemistry, 2009, 21(09): 1813-1819.