中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (7): 1076-1083 DOI: 10.7536/PC160139 Previous Articles   Next Articles

• Review and comments •

Organic/Inorganic Nanocomposites Prepared by Miniemulsion Polymerization

Gao Dangge*, Liang Zhiyang, Lyu Bin, Ma Jianzhong   

  1. College of Resources and Environment, Shaanxi University of Science & Technology, Xi'an 710021, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation for Young Scholars of China (No.21406135),the Natural Science Foundation of Shaanxi Province,China (No.2015JM2061),the Youth Science and Technology New Star Project of Shaanxi Province (No.2016KJXX-02),and the Scientific Research Innovation Team of Shaanxi University of Science and Technology (No.TD12-03).
PDF ( 787 ) Cited
Export

EndNote

Ris

BibTeX

The introduction of inorganic nanoparticles can make the polymer materials many characteristics, such as antibacterial, conductive, anti-ultraviolet. However, the inorganic nanoparticles are easy to agglomerate and less content of nanoparticles is introduced in polymer, so it is difficult to demonstrate advantage of nano material. Based on its unique droplet nucleation mechanism, miniemulsion polymerization can improve the inorganic nanoparticles’ dispersity and amount of introduction in polymer matrix, and control the morphology of the composites easily. It is an effective method to obtain the special morphology of organic/inorganic nanocomposites. This paper introduces the preparation process of organic/inorganic nanocomposite miniemulsion, and reviews the recent progress of different inorganic nanoparticles with organic matrix composites, such as nano-SiO2, nano-ZnO, metal nanoparticles, nano-graphene oxide, etc. At last, some suggestions on the present development situation are given.

Contents
1 Introduction
2 Preparation and polymerization of organic/inorganic composite miniemulsion
3 The composite of different inorganic nanoparticles and organic matrix
3.1 The composite of nano-SiO2 with organic matrix
3.2 The composite of nano-ZnO with organic matrix
3.3 The composite of metal nanoparticles with organic matrix
3.4 The composite of GO with organic matrix
3.5 The composite of other inorganic nanoparticles with organic matrix
4 Conclusion

CLC Number: 

[1] Ray S S, Okamoto M. Prog. Polym. Sci., 2003, 28:1539.
[2] Paul D R, Robeson L M. Polymer, 2008, 49:3187.
[3] Schmid A, Armes S P, Leite C A P, Galembeck F. Langmuir, 2009, 25:2486.
[4] Schmid A, Fujii S, Armes S. P. Langmuir, 2006, 22:4923.
[5] Yi D, Lee S, Ying J. Chem. Mater., 2006, 18:2459.
[6] Tancharernrat T, Rempel G L, Prasassarakich P. Polymer Degradation and Stability, 2015, 118:69.
[7] Tancharernrat T, Rempel G L, Prasassarakich P. Chemical Engineering Journal, 2014, 258:290.
[8] Christian G, Alain G. Macromolecules, 2003, 36(17):6371.
[9] Ludmila I R, Roque J M, Mario C G, Gregorio R M, Luis M G. Chemical Engineering Journal, 2015, 263:231.
[10] Katharina L. Angew. Chem. Int. Ed., 2009, 48:4488.
[11] Hu J, Chen M, Wu L M. Polymer Chemistry, 2011, 2:760.
[12] Ugelstad J, El-Aasser M S, Vanderhoff, J W. J. Polym. Sci. Polym. Lett. Ed., 1973, 11(8):503.
[13] Chou Y J, EI-Aasser M S, Vanderhoff J W. Dispersion Sci. Technol., 1980, 1:12.
[14] Qi D M, Cao Z H, Ulrich Z. Advances in Colloid and Interface Science, 2014, 211:47.
[15] Costoyas A, Ramos J, Forcada J. J. Polym. Sci., Part A:Polym. Chem., 2009, 47:935.
[16] Ma J Y, Lu M G, Cao C L, Zhang H X. Polymer Composites, 2013, 34(5):626.
[17] Yu Y, Chen C, Chen W. Polymer, 2003, 44:593.
[18] Chau J, Hsieh C, Lin Y, Li A K. Prog. Org. Coat., 2008, 62(4):436.
[19] Schoth A, Wagner C, Hecht L L, Winzen S, Munoz-Espi R, Heike P. Colloid Polym. Sci., 2014, 292(10):2427.
[20] Zhang S W, Zhou S X, Weng Y M, Wu L M. Langmuir, 2005, 21:2124.
[21] Hecht L L, Wagner C, Özcan Ö, Eisenbart F, Köhler K, Landfester K. Macromol. Chem. Phys., 2012, 213:2165.
[22] 倪士宝(Ni S B),王政(Wang Z),聂王焰(Nie W Y),周艺峰(Zhou Y F),宋林勇(Song L Y).材料工程(Journal of Materials Engineering), 2012, 9:66.
[23] Bourgeat-Lami E, Farzi G. A., David L, Putaux J L, McKenna T F L. Langmuir, 2012, 28(14):6021.
[24] Pickering S U. J. Am. Chem. Soc., 1907, 91:2001.
[25] Karim G M, G. P L, Christopher T, Jose M. A. Polymer, 2013, 54(23):6314.
[26] Özgür Ü, Alivov Y I, Liu C, Teke A, Reshchikov M A, Do?n S, Avrutin V, Cho S J, MorkoçH. J. Appl. Phys., 2005, 98:041301.
[27] Zhang J J, Gao G, Zhang M, Zhang D, Wang C L, Zhao D C, Liu F Q. Journal of Colloid and Interface Science, 2006, 301(1):78.
[28] Tang E J, Dong S Y. Colloid Polym. Sci., 2009, 287:1025.
[29] Aguirre M., Barrado M, Paulis M, Leiza J R. Macromolecules, 2014, 47(23):8404.
[30] Pishvaei M, Tabrizi F F. Iran. Polym. J., 2010, 19:707.
[31] Aguirre M, Barrado M, Iturrondobeitia M, Okarizd A, Gurayac T, Paulisa M, Jose R L. Chemical Engineering Journal, 2015, 270:300.
[32] Serra C L, Tulliani J M, Sangermano M. Macromol. Mater. Eng., 2014, 299(11):1352.
[33] Barkade S S, Pinjari D V, Singh A K, Gogate P R, Naik J B, Sonawane S H. Ind. Eng. Chem. Res., 2013, 52(23):7704.
[34] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105:1025.
[35] Daniel M C, Astruc D. Chem. Rev., 2004, 104:293.
[36] Koh H D, Changez M, Lee J P, Lee J S. Macromolecular Rapid Communications, 2009, 30(18):1583.
[37] Mamaghani M Y, Pishvaei M, Kaffashil B. Macromolecular Research, 2011, 19(3):243.
[38] Barkade S S, Naik J B, Sonawane S H. Colloids Surf. A, 2011, 378:94.
[39] Staudt T, Machado T O, Vogel N, Weiss C K, Arauj P H H, Sayer C, Landfester K. Macromolecular Chemistry and Physics, 2013, 214(19):2213.
[40] Romio A P, Rodrigues H H, Peres A, Viegas A D, Kobitskaya E, Ziener U, Landfester K, Sayer C, Araujo P H H. J. Applied Polymer, 2013, 129(3):1426.
[41] Fuchs A V, Will G D. Polymer, 2010, 51(10):2119.
[42] Siegwart D J, Srinivasan A, Bencherif S A, Karunanidhi A, Oh J K, Vaidya S, Jin R, Hollinger J O, Matyjaszewski K. Biomacromolecules, 2009, 10(8):2300.
[43] Van Berkel K Y, Hawker C J. J. Polym. Sci. Part A:Polym. Chem., 2010, 48(7):1594.
[44] Borthakur L J, Konwer S, Das R, Dolui S K. J. Polym. Res., 2011, 18(5):1207.
[45] Etmimi H M, Tonge M P, Sanderson R D. J. Polym. Sci. Part A:Polym. Chem., 2011, 49(7):1621.
[46] Etmimi H M, Sanderson R D. Macromolecules, 2011, 44(21):8504.
[47] Park N, Lee J, Min H, Park Y D, Lee H S. Polymer, 2014, 55(20):5088.
[48] Tan Y Q, Fang L J, Xiao J L, Song Y H, Zheng Q. Polym. Chem., 2013, 4:2939.
[49] Man S H C, Thickett S C, Whittaker M R, Zetterlund P B. J. Polym. Sci. Part A:Polym. Chem., 2013, 51(1):47.
[50] Che Man S H, Ly D, Whittaker M R., Thickett S C, Zetterlund P B. Polymer, 2014, 55(16):3490.
[51] Zgheib N, Putaux JL, Thill A, D'Agosto F, Lansalot M, Bourgeat-Lami E. Langmuir, 2012, 28:6163.
[52] Zengeni E, Hartmann P C, Pasch H. ACS Appl. Mater. Interfaces, 2012, 4(12):6957.
[53] Zengeni E, Hartmann P C, Pasch H. Macromol. Chem. Phys., 2013, 214(1):62.
[54] Bonnefond A, Paulis M, Bon SAF, Leiza J R. Langmuir, 2013, 29:2397.
[55] Wu Y F, Zhang Y, Xu J X, Chen M, Wu L M. J. Colloid Interface Sci., 2010, 343:18.
[56] 白福顺(Bai F S),杜长森(Du C S),田安丽(Tian A L),梅国成(Mei G C),付少海(Fu S H).精细化工(Fine Chemicals), 2014, 31(1):103.
[57] Aguirre M, Paulis M, Leiza J R. Polymer, 2014, 55(3):752.
[58] Yan F, Zheng X W, Sun Z M, Zhao A H. Polym. Bull., 2012, 68:1305.
[59] Capek I. Des. Monomers Polym., 2012, 15(4):345.
[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Zheng Chen, Zhenhua Jiang. Discussion on Some Chemical Problems of Polymer Condensed Statein Solvent-Free Polymer Production Technology [J]. Progress in Chemistry, 2022, 34(7): 1576-1589.
[3] Hang Yin, Zhi Li, Xiaofeng Guo, Anchao Feng, Liqun Zhang, San Hoa Thang. Selection Principle of RAFT Chain Transfer Agents and Universal RAFT Chain Transfer Agents [J]. Progress in Chemistry, 2022, 34(6): 1298-1307.
[4] Li Jintao, Zhang Mingzu, He Jinlin, Ni Peihong. Application of Deep Eutectic Solvents in Polymer Synthesis [J]. Progress in Chemistry, 2022, 34(10): 2159-2172.
[5] Wentao Li, Hai Zhong, Yaohua Mai. In-Situ Polymerization Electrolytes for Lithium Rechargeable Batteries [J]. Progress in Chemistry, 2021, 33(6): 988-997.
[6] Tingting Heng, Hui Zhang, Mingxue Chen, Xin Hu, Liang Fang, Chunhua Lu. Graft Modification of PVDF-Based Fluoropolymers [J]. Progress in Chemistry, 2021, 33(4): 596-609.
[7] Yena Feng, Shuhe Liu, Shubo Zhang, Tong Xue, Honglin Zhuang, Anchao Feng. Preparation of SiO2/Polymer Nanocomposites Based on Polymerization-Induced Self-Assembly [J]. Progress in Chemistry, 2021, 33(11): 1953-1963.
[8] Chuxuan Yan, Qinglin Li, Zhengqi Gong, Yingzhi Chen, Luning Wang. Organic Semiconductor Nanostructured Photocatalysts [J]. Progress in Chemistry, 2021, 33(11): 1917-1934.
[9] Xia Li, Hongyan Ma, Xiaojuan Nie, Xu Liu, Chengming Bian, Long Xie. Preparation of Star-Like Polymer Based on Cyclodextrin and Its Application [J]. Progress in Chemistry, 2020, 32(7): 935-942.
[10] Lianwei Sun, Zhonghe Sun, Xue Wang, Lin Xu, Anchao Feng, Liqun Zhang. Synthesis of Polyethylene and Polyhalogenated Olefin by Controlled/“Living” Radical Polymerization [J]. Progress in Chemistry, 2020, 32(6): 727-737.
[11] Wanqiu Huang, Miaomiao Gao, Hongjing Dou. Polypyrrole and Its Nanocomposites Applied in Photothermal Therapy [J]. Progress in Chemistry, 2020, 32(4): 371-380.
[12] Guofu Qin, Yihuan Liu, Fan Yin, Xin Hu, Ning Zhu, Kai Guo. Grafting Modification of Lignin via Ring-Opening Polymerization [J]. Progress in Chemistry, 2020, 32(10): 1547-1556.
[13] Kerui Chen, Xin Hu, Jiangkai Qiu, Ning Zhu, Kai Guo. Synthesis of Bottlebrush Polymers by Ring-Opening Metathesis Polymerization [J]. Progress in Chemistry, 2020, 32(1): 93-102.
[14] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[15] Ni Huang, Feng Xu, Jiangbin Xia. Solid State Polymerization of Polythiophene and Its Applications [J]. Progress in Chemistry, 2019, 31(8): 1103-1115.