中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (5): 686-696 DOI: 10.7536/PC151141 Previous Articles   Next Articles

• Review and comments •

Synthesis, Characterization and Catalytic Applications of Hierarchically Porous Aluminophosphate Molecular Sieves

Zhao Xinhong*, Gao Xiangping, Hao Zhixin, Zhang Xiaoxiao   

  1. School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21306072).
PDF ( 1677 ) Cited
Export

EndNote

Ris

BibTeX

Hierarchically porous aluminophosphate molecular sieves possessing both micropores and mesopores recently receive increasing interest because they can reduce diffusion limitations in the reactions involving bulky molecules. This paper mainly focuses on the latest development of synthesis, characterizations and catalytic applications of hierarchically porous aluminophosphate molecular sieves. According to the formation mechanism of hierarchical pores, the synthetic methods of the hierarchical structured aluminophosphate molecular sieves can be classified into four categories: hard template, soft template, nontemplated and post-synthesis method. The advantages and disadvantages of these synthetic methods are systematically compared with each other. From the point view of industrial application, the nontemplated and post-synthesis methods are more promising compared to other synthetic routes. In addition, various techniques characterizing the acid properties and pore textures of hierarchically porous molecular sieves are described, taking silicoaluminophosphate molecular sieve as an example. However, most of these measurements need to be performed on complex expensive instruments, and the process is time-consuming. Thus, to develop some facile and general characterization techniques is highly desirable.Finally, the catalytic applications of these hierarchically porous materials in three kinds of important reactions (such as alkylation reaction, isomerization reaction and methanol to olefins) are reviewed. The relationships between the catalytic performances and the properties of catalysts are analyzed in detail.

Contents
1 Introduction
2 Synthesis of hierarchically porous aluminophosphate molecular sieves
2.1 Hard-template method
2.2 Soft-template method
2.3 Nontemplated method
2.4 Post-synthesis method
3 Characterizations of acid properties and pore textures
4 Catalytic applications of hierarchically porous aluminophosphate molecular sieves
4.1 Alkylation reaction
4.2 Isomerization reaction
4.3 Methanol (dimethyl ether) to olefins
4.4 Other reactions
5 Conclusion and outlook

CLC Number: 

[1] 谢在库(Xie Z K). 新结构高性能多孔催化材料(Porous Catalytic Materials with New Structure and Improved Performance). 北京: 中国石化出版社(Beijing: Sinopec Press), 2010. 129.
[2] Chen L H, Li X Y, Rooke J C, Zhang Y H, Yang X Y, Tang Y, Xiao F S, Su B L. J. Mater. Chem., 2012, 22(34): 17381.
[3] Hua Z L, Zhou J, Shi J L. Chem. Commun., 2011, 47(38): 10536.
[4] 王德举(Wang D J), 刘仲能(Liu Z N), 李学礼(Li X L), 谢在库(Xie Z K). 化学进展(Progress in Chemistry), 2008, 20(5): 637.
[5] 寇龙(Kou L), 王有和(Wang Y H), 彭鹏(Peng P), 阎子峰(Yan Z F). 化学进展(Progress in Chemistry), 2014, 26(4): 522.
[6] 汪洋(Wang Y), 马利勇(Ma L Y), 朱宁(Zhu N), 陈丰秋(Chen F Q), 詹晓力(Zhan X L). 化学进展(Progress in Chemistry), 2009, 21(9): 1722.
[7] 彭鹏(Peng P), 张占全(Zhang Z Q), 王有和(Wang Y H), Fazle S, 阎子峰(Yan Z F). 化学进展(Progress in Chemistry), 2013, 25(12): 2028.
[8] Tao Y S, Kanoh H, Abrams L, Kaneko K. Chem. Rev., 2006, 106(3): 896.
[9] Egeblad K, Christensen C H, Kustova M. Chem. Mater., 2008, 20(3): 946.
[10] Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Chem. Soc. Rev., 2008, 37(11): 2530.
[11] Na K, Choi M, Ryoo R. Microporous Mesoporous Mater., 2013, 166: 3.
[12] ?ejka J, Mintova S. Catal. Rev., 2007, 49(4): 457.
[13] Chal R, Gerardin C, Bulut M, van Donk S. Chem. Cat. Chem., 2011, 3(1): 67.
[14] Zhang K, Ostraat M L. Catal. Today., 2015, DOI:10.1016/j.cattod.2015.08.012.
[15] Egeblad K, Kustova M, Klitgaard S K, Zhu K, Christensen C H. Microporous Mesoporous Mater., 2007, 101(1/2): 214.
[16] Schmidt F, Paasch S, Brunner E, Kaskel S. Microporous Mesoporous Mater., 2012, 164: 214.
[17] Sanchez-Sanchez M, Manjon-Sanz A, Diaz I, Mayoral A, Sastre E. Cryst. Growth Des., 2013, 13(6): 2476.
[18] Bertolo R, Silva J M, Ribeiro F, Maldonado-Hodar F J, Fernandes A, Martins A. Appl. Catal. A, 2014, 485: 230.
[19] Naydenov V, Tosheva L, Sterte J. Microporous Mesoporous Mater., 2003, 66(2/3): 321.
[20] Naydenov V, Tosheva L, Antzutkin O N, Sterte J. Microporous Mesoporous Mater., 2005, 78(2/3): 181.
[21] Liu Y, Wang L, Zhang J, Chen F, Anpo M. Res. Chem. Intermed., 2011, 37(8): 949.
[22] Liu Y, Wang L, Zhang J, Chen L, Xu H. Microporous Mesoporous Mater., 2011, 145(1/3): 150.
[23] Choi M, Srivastava R, Ryoo R. Chem. Commun., 2006, 42: 4380.
[24] Danilina N, Krumeich F, van Bokhoven J A. J. Catal., 2010, 272(1): 37.
[25] Danilina N, Castelanelli S A, Troussard E, van Bokhoven J A. Catal. Today, 2011, 168(1): 80.
[26] Kim J, Bhattacharjee S, Jeong K E, Jeong S Y, Choi M, Ryoo R, Ahn W S. New J. Chem., 2010, 34(12): 2971.
[27] Yang S T, Kim J Y, Chae H J, Kim M, Jeong S Y, Ahn W S. Mater. Res. Bull., 2012, 47(11): 3888.
[28] Sun Q, Wang N, Xi D, Yang M, Yu J. Chem. Commun., 2014, 50(49): 6502.
[29] Wu L, Hensen E J M. Catal. Today., 2014, 235: 160.
[30] Verma D, Rana B S, Kumar R, Sibi M G, Sinha A K. Appl. Catal. A, 2015, 490: 108.
[31] Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z. J. Mater. Chem. A, 2015, 3(10): 5608.
[32] Fan Y, Xiao H, Shi G, Liu H, Bao X. J. Catal., 2012, 285(1): 251.
[33] Guo L, Bao X, Fan Y, Shi G, Liu H, Bai D. J. Catal., 2012, 294: 161.
[34] Singh A K, Yadav R, Sakthivel A. Microporous Mesoporous Mater., 2013, 181: 166.
[35] Yadav R, Singh A K, Sakthivel A. Chem. Lett., 2013, 42(10): 1160.
[36] Singh A K, Kondamudi K, Yadav R, Upadhyayula S, Sakthivel A. J. Phys. Chem. C, 2014, 118(48): 27961.
[37] Singh A K, Yadav R, Sudarsan V, Kishore K, Upadhyayula S, Sakthivel A. RSC Adv., 2014, 4(17): 8727.
[38] Kong L, Jiang Z, Zhao J, Liu J, Shen B. Catal. Lett., 2014, 144(9): 1609.
[39] Seo Y, Lee S, Jo C, Ryoo R. J. Am. Chem. Soc., 2013, 135(24): 8806.
[40] Yang X, LuA T, Chen C, Zhou L, Wang F, Su Y, Xu J. Microporous Mesoporous Mater., 2011, 144(1/3): 176.
[41] Zhou L, Lu T, Xu J, Chen M, Zhang C, Chen C, Yang X, Xu J. Microporous Mesoporous Mater., 2012, 161: 76.
[42] Xu B, Zhou L P, Wang F J, Qin H Q, Zhu J, Zou H F. Chem. Commun., 2012, 48(12): 1802.
[43] Yang H, Liu Z, Gao H, Xie Z. J. Mater. Chem., 2010, 20(16): 3227.
[44] Liu Y, Qu W, Chang W, Pan S, Tian Z, Meng X, Rigutto M, van der Made A, Zhao L, Zheng X, Xiao F S. J. Colloid Interface Sci., 2014, 418: 193.
[45] Razavian M, Fatemi S. Z. Anorg. Allg. Chem., 2014, 640(10): 1855.
[46] Komasi M, Fatemi S, Razavian M. Korean J. Chem. Eng., 2015, 32(7): 1289.
[47] Sun Q, Wang N, Guo G, Chen X, Yu J. J. Mater. Chem. A, 2015, 3(39): 19783.
[48] Cui Y, Zhang Q, He J, Wang Y, Wei F. Particuology, 2013, 11(4): 468.
[49] Wang F, Sun L, Chen C, Chen Z, Zhang Z, Wei G, Jiang X. RSC Adv., 2014, 4(86): 46093.
[50] Liu Z, Liu L, Song H, Wang C, Xing W, Komarneni S, Yan Z. Mater. Lett., 2015, 154: 116.
[51] Murthy K, Kulkarni S J, Masthan S K. Microporous Mesoporous Mater., 2001, 43(2): 201.
[52] Utchariyajit K, Wongkasemjit S. Microporous Mesoporous Mater., 2008, 114(1/3): 175.
[53] Utchariyajit K, Wongkasemjit S. Microporous Mesoporous Mater., 2010, 135(1/3): 116.
[54] Li Z, Martinez-Triguero J, Concepcion P, Yu J, Corma A. Phys. Chem. Chem. Phys., 2013, 15(35): 14670.
[55] Wang J, Song J, Yin C, Ji Y, Zou Y, Xiao F S. Microporous Mesoporous Mater., 2009, 117(3): 561.
[56] Manjon-Sanz A, Sanchez-Sanchez M, Munoz-Gomez P, Garcia R, Sastre E. Microporous Mesoporous Mater., 2010, 131(1/3): 331.
[57] Manjon-Sanz A, Sanchez-Sanchez M, Sastre E. Catal. Today., 2012, 179(1): 102.
[58] Jin Y, Chen X, Sun Q, Sheng N, Liu Y, Bian C, Chen F, Meng X, Xiao F S. Chem. Eur. J., 2014, 20(52): 17616.
[59] Zhou W. Adv. Mater., 2010, 22(28): 3086.
[60] Wang Q, Chen G, Xu S. Microporous Mesoporous Mater., 2009, 119(1/3): 315.
[61] Zhu J, Cui Y, Wang Y, Wei F. Chem. Commun., 2009, 22: 3282.
[62] Wang F X, Liang L, Ma J, Sun J M. Mater. Lett., 2013, 111: 201.
[63] Wang F X, Liang L, Ma J, Shi L, Sun J M. Eur. J. Inorg. Chem., 2014, 18: 2934.
[64] Zhao X H, Li X B, Chen J, Qi Y D, Wen J J, Ji D. J. Inorg. Mater., 2014, 29(8): 821.
[65] Zhao X, Chen J, Sun Z, Li A, Li G, Wang X. Microporous Mesoporous Mater., 2013, 182: 8.
[66] 赵新红(Zhao X H), 问娟娟(Wen J J), 陈静(Chen J), 赵江波(Zhao J B), 祁永东(Qi Y D), 李贵贤(Li G X). 无机化学学报(Chin. J. Inorg. Chem.), 2015, 31(1): 29.
[67] Zhao X, Zhao J, Wen J, Li A, Li G, Wang X. Microporous Mesoporous Mater., 2015, 213: 192.
[68] Li Y, Huang Y, Guo J, Zhang M, Wang D, Wei F, Wang Y. Catal. Today., 2014, 233: 2.
[69] Wu Q, Nartey Oduro I, Huang Y, Fang Y. Microporous Mesoporous Mater., 2015, 218: 24.
[70] Verboekend D, Milina M, Perez-Ramirez J. Chem. Mater., 2014, 26(15): 4552.
[71] Xi D, Sun Q, Xu J, Cho M, Cho H S, Asahina S, Li Y, Deng F, Terasaki O, Yu J. J. Mater. Chem. A, 2014, 2(42): 17994.
[72] Xi D, Sun Q, Chen X, Wang N, Yu J. Chem. Commun., 2015, 51(60): 11987.
[73] Groen J C, Peffer L A A, Pérez-Ramírez J. Microporous Mesoporous Mater., 2003, 60(1/3): 1.
[74] 于吉红(Yu J H), 闫文付(Yan W F). 纳米孔材料化学:合成与制备(Ⅱ) (Chemistry of Nanoporous Materials: Synthesis and Preparation (Ⅱ)).北京:科学出版社(Beijing: Science Press),2013. 76.
[75] Mahmoud E, Lobo R F. Microporous Mesoporous Mater., 2014, 189: 97.
[76] Zecevic J, Gommes C J, Friedrich H, de Jongh P E, de Jong K P. Angew. Chem. Int. Ed., 2012, 51(17): 4213.
[77] Liu Y, Zhang W P, Liu Z C, Xu S T, Wang Y D, Xie Z K, Han X W, Bao X H. J. Phy. Chem. C, 2008, 112(39): 15375.
[78] Milina M, Mitchell S, Cooke D, Crivelli P, Perez-Ramirez J. Angew. Chem. Int. Ed., 2015, 54(5): 1591.
[79] Milina M, Mitchell S, Crivelli P, Cooke D, Perez-Ramirez J. Nat. Commu., 2014, 5: 3922.
[80] Thibault-Starzyk F, Stan I, Abelló S, Bonilla A, Thomas K, Fernandez C, Gilson J P, Pérez-Ramírez J. J. Catal., 2009, 264(1): 11.
[81] 黄仲涛(Huang Z T). 工业催化剂手册(Handbook of Industrial Catalyst).北京:化学工业出版社(Beijing: Chemical Industry Press), 2004. 575.
[82] 梁君(Liang J), 王福平(Wang F P). 化学进展(Progress in Chemistry), 2008, 20(4): 457.
[1] Shuai Li, Na Zhu, Yangjian Cheng, Di Chen. Performance of Resistance to Sulfur Oxide and Regeneration over Copper-Based Small-Pore Zeolites Catalysts for the Selective Catalytic Reduction of NOx with NH3 [J]. Progress in Chemistry, 2023, 35(5): 771-779.
[2] Leyi Wang, Niu Li. Relation Among Cu2+, Brønsted Acid Sites and Framework Al Distribution: NH3-SCR Performance of Cu-SSZ-13 Formed with Different Templates [J]. Progress in Chemistry, 2022, 34(8): 1688-1705.
[3] Xiuli Shao, Siqi Wang, Xuan Zhang, Jun Li, Ningning Wang, Zheng Wang, Zhongyong Yuan. Fabrication and Application of MFI Zeolite Nanosheets [J]. Progress in Chemistry, 2022, 34(12): 2651-2666.
[4] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[5] Di Pan, Peng Liu, Hongbin Zhang, Yi Tang. Continuous Flow Synthesis of Zeolites [J]. Progress in Chemistry, 2020, 32(7): 873-881.
[6] Heli Wang, Meihua Zhu, Li Liang, Ting Wu, Fei Zhang, Xiangshu Chen. Preparation and Gas Separation Performance of SSZ-13 Zeolite Membranes [J]. Progress in Chemistry, 2020, 32(4): 423-433.
[7] Chang Liu, Feng Wu, Qianqian Su, Weiping Qian. Template Preparation and Application in Biological Detection of Porous Noble Metal Nanostructures [J]. Progress in Chemistry, 2019, 31(10): 1396-1405.
[8] Xiuxiu Ni, He Ding, Jingshuang Zhang, Zhouliangzi Zeng, Peng Bai, Xianghai Guo*. Strategies for the Synthesis of b-Oriented MFI Zeolite Membranes and Their Applications [J]. Progress in Chemistry, 2018, 30(7): 976-988.
[9] Li Li, Jian Dong, Weiping Qian*. Research in the Preparation and Application of Nanobowl Arrays [J]. Progress in Chemistry, 2018, 30(2/3): 156-165.
[10] Min Yuanyuan, Shang Yunshan, Song Yu, Li Guodong, Gong Yanjun. The Synthesis of Nanosheets Zeolite and Its Catalytic Application [J]. Progress in Chemistry, 2015, 27(8): 1002-1013.
[11] Li Yang, Sun Hongman, Wang Youhe, Xu Benjing, Yan Zifeng. Green Routes for Synthesis of Zeolites [J]. Progress in Chemistry, 2015, 27(5): 503-510.
[12] Shi Jing, Zhao Guoliang, Teng Jiawei, Wang Yangdong, Tang Yi, Xie Zaiku. Advances in the Research of MFI Zeolite Morphology [J]. Progress in Chemistry, 2014, 26(04): 545-552.
[13] Kou Long, Wang Youhe, Peng Peng, Yan Zifeng. Synthesis of Mesoporous Zeolite [J]. Progress in Chemistry, 2014, 26(04): 522-528.
[14] Chen Yanping, Cheng Dang-guo, Chen Fengqiu, Zhan Xiaoli. NO Decomposition and Selective Catalytic Reduction of NO over Cu-ZSM-5 Zeolite [J]. Progress in Chemistry, 2014, 26(0203): 248-258.
[15] Peng Peng, Zhang Zhanquan, Wang Youhe, Fazle Subhan, Yan Zifeng. Hierarchical Molecular Sieves:Synthesis and Catalytic Applications [J]. Progress in Chemistry, 2013, 25(12): 2028-2037.