中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 450-458 DOI: 10.7536/PC151026 Previous Articles   Next Articles

• Review and comments •

Pore Confinement Effects of Catalysts

Xue Lijun, Zhang Di, Wei Jie, Liu Xinmei*   

  1. State Key Laboratory of Heavy Oil Processing, Key Laboratory of Catalysis, China National Petroleum Corporation, China University of Petroleum, Qingdao 266580, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21376267), the Shandong Province Natural Science Foundation of China(No. 2013ZRE28069)and the Fundamental Research Funds for the Central Universities(No. 14CX06106A).
PDF ( 2335 ) Cited
Export

EndNote

Ris

BibTeX

The surface electronic distribution and geometric construction of catalysts can be regulated by confined pore canals, which will affect the activity, selectivity and stability of catalysts. Combined with theoretical calculations and experimental methods, from the perspectives of thermodynamics, kinetics, geometric effect and electron transfer, this review illustrates the differences of the active components of catalysts and the characteristics of reaction molecules in different confined systems, and reveals the influence of confined pore canals on the diffusion, adsorption and reaction of reaction species. It aims to provide a reference for the microstructure design and performance control of catalysts.

Contents
1 Introduction
2 Pore confinement effects on diffusion
3 Pore confinement effects on adsorption
4 Pore confinement effects on catalytic reaction
5 Conclusion

CLC Number: 

[1] Derouane E G, André J M, Lucas A A. Chem. Phys. Lett., 1987, 137 (4): 336.
[2] Derouane E G, Andre J M, Lucas A A. J. Catal., 1988, 110 (1): 58.
[3] Abouelnasr M K, Smit B. Phys. Chem. Chem. Phys., 2012, 14 (33): 11600.
[4] Boekfa B, Pantu P, Probst M, Limtrakul J. J. Phys. Chem. C, 2010, 114 (35): 15061.
[5] Hua B Y, Wang J, Wang K, Li X, Zhu X J, Xia X H. Chem. Commun., 2012, 48 (17): 2316.
[6] Liu X, Wang A, Wang X, Mou C Y, Zhang T. Chem. Commun., 2008, 27: 3187.
[7] Bhide S Y, Ghosh D, Yashonath S, Ananthakrishna G. Curr. Sci. India, 2004, 87 (7): 971.
[8] Yashonath S, Ghorai P K. J. Phys. Chem. B, 2008, 112 (3): 665.
[9] June R L, Bell A T, Theodorou D N. J. Phys. Chem., 1992, 96 (3): 1051.
[10] Barrer R M. Chem-Ing-Tech, 1980, 52 (4): 366.
[11] Yashonath S, Santikary P. J. Phys. Chem., 1994, 98 (25): 6368.
[12] Yashonath S. Faraday Discuss., 1997, 106: 105.
[13] Rajappa C, Yashonath S. J. Phys. Chem. B, 1997, 101 (40): 8035.
[14] Rajappa C, Yashonath S. J. Chem. Phys., 1999, 110 (12): 5960.
[15] 陈爱城 (Chen A C), 陈胜利 (Chen S L), 娄亚峰 (Lou Y F), 陈静 (Chen J). 石油学报 (石油加工)(Acta Petrolei Sinica (Petroleum Processing Section)), 2014, 2: 266.
[16] Montanari T, Finocchio E, Busca G. J. Phys. Chem. C, 2010, 115 (4): 937.
[17] Chiang H, Bhan A. J. Catal., 2010, 271 (2): 251.
[18] Bevilacqua M, Alejandre A G, Resini C, Casagrande M, Ramirez J. Phys. Chem. Chem. Phys., 2002, 4 (18): 4575.
[19] Trombetta M, Busca G. J. Catal., 1999, 187 (2): 521.
[20] Montanari T, Bevilacqua M, Busca G. Appl. Catal. A, 2006, 307 (1): 21.
[21] Radovic L R, Rodriguez-Reinoso F. Chem. Phys. Carbon, 1997, 243.
[22] Liang C, Li Z, Dai S. Angew. Chem. Int. Ed., 2008, 47 (20): 3696.
[23] Pan X, Bao X. Acc. Chem. Res., 2011, 44 (8): 553.
[24] Chen H, Sholl D S. J. Am. Chem. Soc., 2004, 126 (25): 7778.
[25] Peer M, Qajar A, Rajagopalan R, Foley H C. Carbon, 2014, 66: 459.
[26] Santiso E E, Kostov M K, George A M, Nardelli M B, Gubbins K E. Appl. Surf. Sci., 2007, 253 (13): 5570.
[27] Holbrook B P M, Rajagopalan R, Dronvajjala K, Choudhary YK, Foley H C. J. Mol. Catal. A: Chem., 2013, 367: 61.
[28] Guil J M, Guil-López R, Perdigón-Melón J A, Corma A. Micropor. Mesopor. Mater., 1998, 22 (1): 269.
[29] Zheng A, Zhang H, Lu X, Liu S B, Deng F. J. Phys. Chem. B, 2008, 112 (15): 4496.
[30] Huang S J, Zhao Q, Chen W H, Han X, Bao X, Lo P S, Lee H K, Liu S B. Catal. Today, 2004, 97 (1): 25.
[31] Zhao Q, Chen W H, Huang S J, Liu S B. Stud. Surf. Sci. Catal., 2003, 145: 205.
[32] Zheng A, Han B, Li B, Liu S B, Deng F. Chem. Commun., 2012, 48 (55): 6936.
[33] Kondratyuk P, Yates J T. Acc. Chem. Res., 2007, 40 (10): 995.
[34] Guan J, Pan X, Liu X, Bao X. J. Phys. Chem. C, 2009, 113 (52): 21687.
[35] Zhu Y, Li L, Zhang C, Casillas G, Sun Z, Yan Z, Ruan G, Peng Z, Raji A R O, Kittrell C, Hauge R H, Tour J M. Nat. Commun., 2012, 3: 1225.
[36] Dimitrakakis G K, Tylianakis E, Froudakis G E. Nano Lett., 2008, 8 (10): 3166.
[37] Martinez De La Hoz J M, Balbuena P B. ACS Catal., 2015, 5 (1): 215.
[38] Gomez D A, Combariza A F, Sastre G. Phys. Chem. Chem. Phys., 2012, 14 (7): 2508.
[39] Bae Y S, Hauser B G, Colón Y J, Hupp J T, Farha O K, Snurr R Q. Micropor. Mesopor. Mater., 2013, 169: 176.
[40] Jen H W. Catal. Today, 1998, 42 (1): 37.
[41] Shimura K, Miyazawa T, Hanaoka T, Hirata S. J. Mol. Catal. A: Chem., 2014, 394: 22.
[42] Xiong H, Zhang Y, Wang S, Li J. Catal. Commun., 2005, 6 (8): 512.
[43] Borg Ø, Eri S, Blekkan E A, Storsæter S, Wigum H, Rytter E, Holmen A. J. Catal., 2007, 248 (1): 89.
[44] Khodakov A Y, Bechara R, Griboval-Constant A. Appl. Catal. A, 2003, 254 (2): 273.
[45] Song D, Li J. J. Mol. Catal. A: Chem., 2006, 247 (1): 206.
[46] Santiso E E, George A M, Turner C H, Kostov M K, Gubbins K E, Buongiorno-Nardelli M, Sliwinska-Bartkowiak M. Appl. Surf. Sci., 2005, 252 (3): 766.
[47] Toulhoat H, Lontsi Fomena M, de Bruin T. J. Am. Chem. Soc., 2011, 133 (8): 2481.
[48] Gounder R, Iglesia E. Acc. Chem. Res., 2011, 45 (2): 229.
[49] Gounder R, Iglesia E. J. Am. Chem. Soc., 2009, 131 (5): 1958.
[50] Gounder R, Iglesia E. Angew. Chem. Int. Ed., 2010, 49 (4): 808.
[51] Turner C H, Johnson J K, Gubbins K E. J. Chem. Phys., 2001, 114 (4): 1851.
[52] Byl O, Kondratyuk P, Yates J. J. Phys. Chem. B, 2003, 107 (18): 4277.
[53] Johnson J K, Panagiotopoulos A Z, Gubbins K E. Mol. Phys., 1994, 81 (3): 717.
[54] Turner C H, Brennan J K, Pikunic J, Gubbins K E. Appl. Surf. Sci., 2002, 196 (1): 366.
[55] Turner C H, Brennan J K, Johnson J K, Gubbins K E. J. Chem. Phys., 2002, 116 (5): 2138.
[56] Sokolov S, Kondratenko E V, Pohl M M, Barkschat A, Rodemerck U. Appl. Catal. B, 2012, 113: 19.
[57] Xu L, Song H, Chou L. Appl. Catal. B, 2011, 108: 177.
[58] Chen Z, Guan Z, Li M, Yang Q, Li C. Angew. Chem. Int. Ed., 2011, 50 (21): 4913.
[59] Yang H, Zhang L, Zhong L, Yang Q, Li C. Angew. Chem. Int. Ed., 2007, 46 (36): 6861.
[60] Yang H, Li J, Yang J, Liu Z, Yang Q, Li C. Chem. Commun., 2007, 10: 1086.
[61] Yang H, Zhang L, Su W, Yang Q, Li C. J. Catal., 2007, 248 (2): 204.
[62] Bai S, Li B, Peng J, Zhang X, Yang Q, Li C. Chem. Sci., 2012, 3 (9): 2864.
[63] Liu X, Wang P, Zhang L, Yang J, Li C, Yang Q. Chem. Eur. J., 2010, 16 (42): 12727.
[64] Liu X, Li X, Yan Z. Appl. Catal. B: Environ., 2012, 121: 50.
[65] Weingarten R, Tompsett G A, Conner W C, Huber G W. J. Catal., 2011, 279 (1): 174.
[66] Trens P, Tanchoux N, Papineschi P M, Maldonado D, di Renzo F, Fajula F. Micropor. Mesopor. Mater., 2005, 86 (1): 354.
[67] Kresge C, Leonowicz M, Roth W, Vartuli J, Beck J. Nature, 1992, 359 (6397): 710.
[68] Tanchoux N, Pariente S, Trens P, Fajula F. J. Mol. Catal. A: Chem., 2009, 305 (1): 8.
[69] Rao Y, Kang J, Antonelli D. J. Am. Chem. Soc., 2008, 130 (2): 394.
[70] Phung T K, Hernández L P, Lagazzo A, Busca G. Appl. Catal. A: Gen., 2015, 493: 77.
[71] Botas J, Serrano D, García A, de Vicente J, Ramos R. Catal. Today, 2012, 195 (1): 59.
[72] Botas J, Serrano D, García A, Ramos R. Appl. Catal. B: Environ., 2014, 145: 205.
[73] Makarfi Y I, Yakimova M S, Lermontov A S, Erofeev V I, Koval L M, Tretiyakov V F. Chem. Eng. J., 2009, 154 (1): 396.
[74] Li J, Wei Y, Chen J, Xu S, Tian P, Yang X, Li B, Wang J, Liu Z M. ACS Catal., 2014, 5 (2): 661.
[75] Sassi A, Wildman M A, Ahn H J, Prasad P, Nicholas J B, Haw J F. J. Phys. Chem. B, 2002, 106 (9): 2294.
[76] Chu Y, Ji P, Yi X, Li S, Wu P, Zheng A, Deng F. Catal. Sci. Technol., 2015, 5: 3675.
[77] Fernández A, Lezcano-Gonzalez I, Boronat M, Blasco T, Corma A. J. Catal., 2007, 249 (1): 116.
[78] Chu Y, Sun X, Yi X, Ding L, Zheng A, Deng F. Catal. Sci. Technol., 2015, 5: 3507.
[79] Teketel S, Svelle S, Lillerud K P, Olsbye U. ChemCatChem, 2009, 1 (1): 78.
[80] Teketel S, Skistad W, Benard S, Olsbye U, Lillerud K P, Beato P, Svelle S. ACS Catal., 2011, 2 (1): 26.
[81] Lu T, Goldfield E M, Gray S K. J. Phys. Chem. C, 2008, 112 (7): 2654.
[82] Halls M D, Schlegel H B. J. Phys. Chem. B, 2002, 106 (8): 1921.
[83] Santiso E E, Nardelli M B, Gubbins K E. J. Chem. Phys., 2008, 128 (3): 034704.
[84] Chen W, Fan Z, Pan X, Bao X. J. Am. Chem. Soc., 2008, 130 (29): 9414.
[85] Chen W, Pan X, Bao X. J. Am. Chem. Soc., 2007, 129 (23): 7421.
[86] Chen W, Pan X, Willinger M G, Su D S, Bao X. J. Am. Chem. Soc., 2006, 128 (10): 3136.
[87] Pan X, Fan Z, Chen W, Ding Y, Luo H, Bao X. Nat. Mater., 2007, 6 (7): 507.
[88] Yang H, Song S, Rao R, Wang X, Yu Q, Zhang A. J. Mol. Catal. A: Chem., 2010, 323 (1): 33.
[89] Kondratyuk P, Wang Y, Liu J, Johnson J K, Yates J T. J. Phys. Chem. C, 2007, 111 (12): 4578.
[90] Castillejos E, Debouttière P J, Roiban L, Solhy A, Martinez V, Kihn Y, Ersen O, Philippot K, Chaudret B, Serp P. Angew. Chem. Int. Ed., 2009, 48 (14): 2529.
[91] 包信和 (Bao X H). 中国科学:化学 (Science China Chemistry), 2012, 42 (4): 355.
[92] GråNä S E, Andersen M, Arman M A, Gerber T, Hammer B, Schnadt J, Andersen J N, Michely T, Knudsen J. J. Phys. Chem. C, 2013, 117 (32): 16438.
[93] Jin L, Fu Q, Dong A, Ning Y, Wang Z, Bluhm H, Bao X. J. Phys. Chem. C, 2014, 118 (23): 12391.
[94] Feng X, Maier S, Salmeron M. J. Am. Chem. Soc., 2012, 134 (12): 5662.
[95] Jin L, Fu Q, Yang Y, Bao X. Surf. Sci., 2013, 617: 81.
[96] Zhang X, Wang L, Xin J, Yakobson B I, Ding F. J. Am. Chem. Soc., 2014, 136 (8): 3040.
[97] Hsieh Y P, Hofmann M, Chang K W, Jhu J G, Li Y Y, Chen K Y, Yang C C, Chang W S, Chen L C. ACS Nano, 2013, 8 (1): 443.
[98] Zhang Y, Fu Q, Cui Y, Mu R, Jin L, Bao X. Phys. Chem. Chem. Phys., 2013, 15 (43): 19042.
[99] Batzill M. Surf. Sci. Rep., 2012, 67 (3): 83.
[100] Wintterlin J, Bocquet M L. Surf. Sci., 2009, 603 (10): 1841.
[101] Yao Y, Fu Q, Zhang Y, Weng X, Li H, Chen M, Jin L, Dong A, Mu R, Jiang P. Proc. Natl. Acad. Sci., 2014, 111 (48): 17023.
[1] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[2] Yuewen Shao, Qingyang Li, Xinyi Dong, Mengjiao Fan, Lijun Zhang, Xun Hu. Heterogeneous Bifunctional Catalysts for Catalyzing Conversion of Levulinic Acid to γ-Valerolactone [J]. Progress in Chemistry, 2023, 35(4): 593-605.
[3] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[6] Mingjue Zhang, Changpo Fan, Long Wang, Xuejing Wu, Yu Zhou, Jun Wang. Catalytic Reaction Mechanism for Hydroxylation of Benzene to Phenol with H2O2/O2 as Oxidants [J]. Progress in Chemistry, 2022, 34(5): 1026-1041.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[9] Shujin Shen, Cheng Han, Bing Wang, Yingde Wang. Transition Metal Single-Atom Electrocatalysts for CO2 Reduction to CO [J]. Progress in Chemistry, 2022, 34(3): 533-546.
[10] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[11] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[12] Yang Linyan, Guo Yupeng, Li Zhengjia, Cen Jie, Yao Nan, Li Xiaonian. Modulation of Surface and Interface Properties of Cobalt-Based Fischer-Tropsch Synthesis Catalyst [J]. Progress in Chemistry, 2022, 34(10): 2254-2266.
[13] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[14] Wu Qiaomei, Yang Qiyue, Zeng Xianhai, Deng Jiahui, Zhang Liangqing, Qiu Jiarong. Catalytic Conversion of Cellulose-Based Biomass to Diols [J]. Progress in Chemistry, 2022, 34(10): 2173-2189.
[15] Di Zeng, Xuechen Liu, Yuanyi Zhou, Haipeng Wang, Ling Zhang, Wenzhong Wang. Renewable Aromatic Production from Biomass-Derived Furans [J]. Progress in Chemistry, 2022, 34(1): 131-141.
Viewed
Full text


Abstract

Pore Confinement Effects of Catalysts