中文
Announcement
More
Progress in Chemistry 2016, Vol. 28 Issue (4): 428-437 DOI: 10.7536/PC151025 Previous Articles   Next Articles

• Review and comments •

Graphitic Carbon Nitrides: Modifications and Applications in Environmental Purification

Cui Yanjuan*, Wang Yuxiong, Wang Hao, Chen Fangyan   

  1. School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21503096)and the Natural Science Foundation of Jiangsu Province(No. BK20140507).
PDF ( 2136 ) Cited
Export

EndNote

Ris

BibTeX

Semiconductor photocatalytic technology can be used for decomposition, conservation and mineralization of environmental pollutants, so it is a long-term effective approach to purify environmental pollution. Polymer semiconductor graphitic carbon nitride (g-C3N4), a new-type metal-free functional material, possesses distinct electronic structure and chemical property, and has attracted a wide spread attention in clean energy conversation and chemical synthesis using solar power. In recent years, the development of g-C3N4 makes further progress of environmental purification research using semiconductor photocatalytic technology. In this review, some important advances using g-C3N4 as novel photocatalysts for environmental pollutants treatment have been reviewed, including degradation of aqueous organic pollutant, inactivation of bacteria, removal of atmospheric contaminant, detoxication of heavy metal ion, and reduction or conversation of CO2. High efficiency and stability can be maintained during photocatalytic reaction process. For further improve the catalytic efficiency of g-C3N4, many works for structure optimization have been researched. Taking the utilization in degradation of organic pollutant as examples, the modifications of g-C3N4 for photocatalytic performance optimization are summarized, including structure optimization, surface and doping modification, composite semiconductor. The photocatalytic reaction mechanisms of g-C3N4 for pollutants degradation and CO2 reduction are elucidated. In addition, the prospects for the development of g-C3N4 based semiconductor materials and application in environment pollutants treatment are also discussed.

Contents
1 Introduction
2 Modification of g-C3N4 photocatalysts
2.1 Structure optimization
2.2 Surface modification
2.3 Doping modification
2.4 Composite semiconductor
3 Application of g-C3N4 in envrionmental purification
3.1 Degradation of aqueous organic pollutants
3.2 Reduction of heavy metal ions
3.3 Inactivation of bacterial
3.4 Removal of atmospheric pollutants
3.5 Reduction and conservation of CO2
4 Mechanism study of g-C3N4 in degradation of environmental pollutants
5 Conclusion and outlook

CLC Number: 

[1] Chen X, Shen S, Guo L, Mao S S. Chem. Rev., 2010, 110: 6503.
[2] Cates E L, Chinnapongse S L, Kim J, Kim J. Environ. Sci. Technol., 2012, 46: 12316.
[3] Kisch H. Angew. Chem. Int. Ed., 2013, 5: 812.
[4] Wang X, Maeda K, Thomas A, Takanabe K, Calesson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.
[5] Fina F, Callear S K, Carins G M, Irvine J T S. Chem. Mater., 2015, 27: 2612.
[6] Zhang M, Wang X. Energy Environ. Sci., 2014, 7: 1902.
[7] Zhang G, Zang S, Wang X. ACS Catal., 2015, 5: 941.
[8] Zheng D, Pang C, Liu Y, Wang X. Chem. Commun., 2015, 51: 9706.
[9] Zhang J, Zhang M, Lin L, Wang X. Angew. Chem. Int. Ed., 2015, 54: 6297.
[10] Wang Y, Wang X, Antonietti M. Angew. Chem. Int. Ed., 2012, 51: 68.
[11] Cao S, Low J, Yu J, Jaroniec M. Adv. Mater., 2015, 27: 2150.
[12] Li X, Antonietti M. Chem. Soc. Rev., 2013, 42: 6593.
[13] 张金水(Zhang J S), 王 博(Wang B), 王心晨(Wang X C). 化学进展(Progress in Chemistry), 2014, 26(1): 19.
[14] Zhang J, Chen Y, Wang X. Energy Environ. Sci., 2015, 8: 3092.
[15] Zheng Y, Lin L, Wang B, Wang X. Angew. Chem. Int. Ed., 2015, 54: 12868.
[16] Cui Y, Huang J, Fu X, Wang X. Catal. Sci. Technol., 2012, 2: 1396.
[17] Zhang M, Xu J, Zong R, Zhu R. Appl. Catal. B: Environ., 2014, 147: 229.
[18] Niu P, Yin L, Yang Y, Liu G, Cheng H. Adv. Mater., 2014, 26: 8046.
[19] Fan Q, Liu J, Yu Y, Zuo S. RSC Adv., 2014, 4: 61877.
[20] Chen X, Jun Y, Takanabe K, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chem. Mater., 2009, 21: 4093.
[21] Sun J, Zhang J, Zhang M, Antonietti M, Fu X, Wang X. Nat. Commun., 2012, 3: 1139.
[22] Zhang J, Zhang M, Yang C, Wang X. Adv. Mater., 2014, 26: 4121.
[23] Zheng Y, Lin L, Ye X, Guo F, Wang X. Angew. Chem. Int. Ed., 2014, 53: 11926.
[24] Cui Y, Ding Z, Fu X, Wang X. Angew. Chem. Int. Ed., 2012, 51: 11814.
[25] Shalom M, Inal S, Fettkenhauer C, Neher D, Antonietti M. J. Am. Chem. Soc., 2013, 135: 7118.
[26] Jun Y, Lee E Z, Wang X, Hong W H, Stucky G D, Thomas A. Adv. Funct. Mater., 2013, 23: 3661.
[27] Ge L, Han C, Liu J, Li Y. Appl. Catal. A: Gen., 2011, 409/410: 215.
[28] Li X, Wang X, Antonietti M. Chem. Sci., 2012, 3: 2170.
[29] Guo Y, Chu S, Yan S, Wang Y, Zou Z. Chem. Commun.,2010, 46: 7325.
[30] Liu C, Jing L, He L, Luan Y, Li C. Chem.Commun., 2014, 50: 1999.
[31] Lu W, Xu T, Wang Y, Hu H, Li N, Jiang X, Chen W. Appl. Catal. B: Environ., 2016, 180: 20.
[32] Wang X, Chen X, Thomas A, Fu X, Antonietti M. Adv. Mater., 2009, 21: 1609.
[33] Zhang G, Huang C, Wang X. Small, 2015, 11: 1215.
[34] Hu S, Li F, Fan Z, Wang F, Zhao Y, Lv Z. Dalton Trans., 2015, 44: 1084.
[35] Yan S, Li Z, Zou Z. Langmuir, 2010, 26: 3894.
[36] Liu G, Niu P, Sun C, Smith S C, Chen Z, Lu G Q, Cheng H. J. Am. Chem. Soc., 2010, 132: 11642.
[37] Lin Z, Wang X. Angew. Chem. Int. Ed., 2013, 52: 1735.
[38] Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X. Adv. Mater., 2014, 26: 805.
[39] Huang C, Chen C, Zhang M, Lin L, Ye X, Lin S, Antonietti M,Wang X. Nat. Commun., 2015, 6: 7698.
[40] Chen Z, Sun P, Fan B, Liu Q, Zhang Z, Fang X. Appl. Catal. B: Environ., 2015, 170/171: 10.
[41] Chen D, Wang K, Xiang D, Zong R, Yao W, Zhu Y. Appl. Catal. B: Environ., 2014, 147: 554.
[42] Zhou X, Yao S, Long Y, Wang Z, Li W. Mater. Lett., 2015, 145: 23.
[43] Li K, Gao S, Wang Q, Xu H, Wang Z, Huang B, Dai Y, Lu J. ACS Appl. Mater. Interfaces, 2015, 7: 9023.
[44] Xu Y, Zhang W. Sci. Adv. Mater., 2014, 6: 2611.
[45] Chen L, Zhang W. Sci. Adv. Mater., 2014, 6: 1091.
[46] 崔言娟(Cui Y J). 催化学报(Chin. J. Catal.), 2015, 36: 372.
[47] Di J, Xia J, Yin S, Xu H, Xu L, Xu Y, He M, Li H. J. Mater. Chem. A, 2014, 2: 5340.
[48] Wang S, Li D, Sun C, Yang S, Guan Y, He H. Appl. Catal. B: Environ., 2014,144: 885.
[49] Qiu P, Chen H, Jiang F. RSC Adv. 2014, 4: 39969.
[50] Jiang Z, Jiang D, Yan Z, Liu D, Qian K, Xie J. Appl. Catal. B: Environ., 2015, 170/171: 195.
[51] Pawar R C, Khare V, Lee C S. Dalton Trans., 2014, 43: 12514.
[52] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem., 2012, 22: 2721.
[53] Chai B, Liao X, Song F, Zhou H. Dalton Trans., 2014, 43: 982.
[54] Li H, Liu Y, Gao X, Fu C, Wang X. ChemSusChem, 2015, 8: 1189.
[55] Cui Y, Ding Z, Liu P, Antonietti M, Fu X, Wang X. Phys. Chem. Chem. Phys., 2012, 14: 1455.
[56] Xiao J, Xie Y, Cao H, Wang Y, Zhao Z. Catal. Commun., 2015, 66: 10.
[57] Liu J, Zhang T, Wang Z, Dawsona G, Chen W. J. Mater. Chem., 2011, 21: 14398.
[58] Ge L. Mater. Lett., 2011, 65: 2652.
[59] Wu S, Chen C, Zhang W. Chin. Chem. Lett., 2014, 25: 1247.
[60] Hong Y, Jiang Y, Li C, Fan W, Yan X, Yan M, Shi W. Appl. Catal. B: Environ., 2016, 180: 663.
[61] Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L. Appl. Catal. B: Environ., 2013, 142/143: 553.
[62] Xue J, Ma S, Zhou Y, Zhang Z, He M. ACS Appl. Mater. Interfaces, 2015, 7: 9630.
[63] He M, Zhao D, Xia J, Xu L, Di J, Xu H, Yin S, Li H. Mater. Sci. Semicond. Process, 2015, 32: 117.
[64] Dong G, Zhao K, Zhang L. Chem. Commun., 2012, 48: 6178.
[65] Zhang H, Zhao L, Geng F, Guo L, Wan B, Yang Y. Appl. Catal. B: Environ., 2016, 180: 656.
[66] Zhang L, Chen X, Guan J, Jiang Y, Hou T, Mu X. Mater. Res. Bull., 2013, 48: 3485.
[67] Cheng N, Tian J, Liu Q, Ge C, Qusti A H, Abdullah M. Asiri A M, Al-Youbi A O, Sun X. ACS Appl. Mater. Interfaces, 2013, 5: 6815.
[68] Chen D, Wang K, Hong W, Zong R, Yao W, Zhu Y. Appl. Catal. B: Environ., 2015, 166/167: 366.
[69] Ding M, Wang W, Zhou Y, Lu C, Ni Y, Xu Z. J. Alloys Compd., 2015, 635: 34.
[70] Fu J, Chang B, Tian Y, Xi F, Dong X. J. Mater. Chem. A, 2013, 1: 3083.
[71] Kumar S, Baruah A, Tonda S, Kumar B, Shanker V, Sreedhar B. Nanoscale, 2014, 6: 4830.
[72] Pawar R C, Kang S, Ahn S H, Lee C S. RSC Adv., 2015, 5: 24281.
[73] Obregón S, Colón G. Appl. Catal. B: Environ., 2014, 144: 775.
[74] Hu X, Ji H, Chang F, Luo Y. Catal. Today, 2014, 224: 34.
[75] Sridharan K, Jang E, Park T J. Appl. Catal. B: Environ., 2013, 142/143: 718.
[76] Hou Y, Wen Z, Cui S, Guo X, Chen J. Adv. Mater., 2013, 25: 6291.
[77] Dong G, Zhang L. J. Phys. Chem. C, 2013, 117: 4062.
[78] Zhang Y, Zhang Q, Shi Q, Cai Z, Yang Z. Sep. Purif. Technol., 2015, 142: 251.
[79] Wang W, Yu J C, Xia D, Wong P K, Li Y. Environ. Sci. Technol. 2013, 47: 8724.
[80] Huang J, Ho W,Wang X. Chem. Commun., 2014, 50: 4338.
[81] Dong F, Wang Z, Sun Y, Ho W, Zhang H. J. Colloid Interface Sci., 2013, 401: 70.
[82] Dong F, Ou M, Jiang Y, Guo S, Wu Z. Ind. Eng. Chem. Res., 2014, 53: 2318.
[83] Dong F, Zhao Z, Xiong T, Ni Z, Zhang W, Sun Y, Ho W. ACS Appl. Mater. Interfaces, 2013, 5: 11392.
[84] Dong F, Ni Z, Li P, Wu Z. New J. Chem., 2015, 39: 4737.
[85] Sun Y, Zhang W, Xiong T, Zhao Z, Dong F, Wang R, Ho W. J. Colloid Interface Sci., 2014, 418: 317.
[86] Dong F, Wang Z, Li Y, Ho W, Lee S C. Environ. Sci. Technol. 2014, 48: 10345.
[87] Wang Z, Guan W, Sun Y, Dong F, Zhou Y, Ho W. Nanoscale, 2015, 7: 2471.
[88] Ho W, Zhang Z, Xu M, Zhang X, Wang X, Huang Y. Appl. Catal. B: Environ., 2015,179: 106.
[89] Nie H, Ou M, Zhong Q, Zhang S, Yu L. J. Hazard. Mater., 2015, 300: 598.
[90] Zhao Z, Dai Y. J. Mater. Chem. A, 2014, 2: 13442.
[91] Chen X, Huang X, Yi Z. Chem. Eur. J., 2014, 20: 17590.
[92] Muñoz-Batista M, Kubacka A, Fernández-García M. Catal. Sci. Technol., 2014, 4: 2006.
[93] Yu J, Wang S, Low J, Xiao W. Phys. Chem. Chem. Phys., 2013, 15: 16883.
[94] Katsumata K, Motoyoshi R, Matsushita N, Okada K. J. Hazard. Mater., 2013, 260: 475.
[95] Jin Z, Murakami N, Tsubota T, Ohno T. Appl. Catal. B: Environ., 2014, 150/151: 479.
[96] Dong G, Zhang L. J. Mater. Chem., 2012, 22: 1160.
[97] Mao J, Peng T, Zhang X, Li K, Ye L, Zan L. Catal. Sci. Technol., 2013, 3: 1253.
[98] Maeda K, Sekizawa K, Ishitani O. Chem. Commun., 2013, 49: 10127.
[99] Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O. J. Mater. Chem. A, 2014, 2: 15146.
[100] Kuriki R, Sekizawa K, Ishitani O, Maeda K. Angew. Chem. Int. Ed., 2015, 54: 2406.
[101] Zhang G, Lan Z, Wang X. ChemCatChem, 2015, 7: 1422.
[102] Lin J, Pan Z, Wang X. ACS Sustain. Chem. Eng., 2014, 2: 353.
[103] Qin J, Wang S, Ren H, Hou Y, Wang X. Appl. Catal. B: Environ., 2015, 179: 1.
[104] Ong W, Tan L, Chai S, Yong S. Dalton Trans., 2015, 44: 1249.
[105] Yu J, Wang K, Xiao W, Cheng B. Phys. Chem. Chem. Phys., 2014, 16: 11492.
[106] Bai S, Wang X, Hu C, Xie M, Jiang J, Xiong Y. Chem. Commun., 2014, 50: 6094.
[107] Cao S, Liu X, Yuan Y, Zhang Z, Liao Y, Fang J, Loo S C J, Sum T C, Xue C. Appl. Catal. B: Environ., 2014, 147: 940.
[108] He Y, Zhang L, Fan M, Wang X, Walbridge M L, Nong Q, Wu Y, Zhao L. Sol. Energy Mater. Sol. Cells, 2015, 137: 175.
[109] Yuan Y, Cao S, Liao Y, Yin L, Xue C. Appl. Catal. B: Environ., 2013, 140/141: 164.
[110] Su Q, Sun J, Wang J, Yang Z, Cheng W, Zhang S. Catal. Sci. Technol., 2014, 4: 1556.
[111] Xu J, Wu F, Jiang Q, Li Y. Catal. Sci. Technol., 2015, 5: 447.
[112] Lakhi K S, Cha W S, Joseph S, Wood B J, Aldeyab S S, Lawrence G, Choy J, Vinu A. Catal. Today, 2015, 243: 209.
[113] Fettkenhauer C, Weber J, Antonietti M, Dontsova D. RSC Adv., 2014, 4: 40803.
[114] Xu Y, Gao S. Int. J. Hydrogen Energy., 2012, 37: 11072.
[115] Wei W, Jacob T. Phys. Rev. B, 2013, 87: 085202.
[116] Zhang J, Chen X, Takanabe K, Maeda K, Domen K, Epping J, Fu X, Antonietti M, Wang X. Angew. Chem. Int. Ed., 2010, 49: 441.
[1] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[2] Li Zhou, Abdelkrim Yasmine, Zhiguo Jiang, Zhongzhen Yu, Jin Qu. Microplastics: A Review on Biological Effects, Analysis and Degradation Methods [J]. Progress in Chemistry, 2022, 34(9): 1935-1946.
[3] Qianqian Fan, Lu Wen, Jianzhong Ma. Lead-Free Halide Perovskite Nanocrystals: A New Generation of Photocatalytic Materials [J]. Progress in Chemistry, 2022, 34(8): 1809-1814.
[4] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[5] Yimin Sun, Houshen Li, Zhenyu Chen, Dong Wang, Zhanpeng Wang, Fei Xiao. The Application of MXene in Electrochemical Sensor [J]. Progress in Chemistry, 2022, 34(2): 259-271.
[6] Nan Wang, Yuqi Zhou, Ziye Jiang, Tianyu Lv, Jin Lin, Zhou Song, Lihua Zhu. Synergistically Consecutive Reduction and Oxidation of Per- and Poly-Halogenated Organic Pollutants [J]. Progress in Chemistry, 2022, 34(12): 2667-2685.
[7] Xiaoping Chen, Qiaoshan Chen, Jinhong Bi. Photocatalytic Degradation of Polycyclic Aromatic Hydrocarbon in Soil [J]. Progress in Chemistry, 2021, 33(8): 1323-1330.
[8] Yong Xie, Mingjie Han, Yuhao Xu, Chenyu Xiong, Ri Wang, Shanhong Xia. Inner Filter Effect for Environmental Monitoring [J]. Progress in Chemistry, 2021, 33(8): 1450-1460.
[9] Wenliang Han, Linyang Dong. Activation Methods of Advanced Oxidation Processes Based on Sulfate Radical and Their Applications in The Degradation of Organic Pollutants [J]. Progress in Chemistry, 2021, 33(8): 1426-1439.
[10] Xiaohong Yi, Chongchen Wang. Elimination of Emerging Organic Contaminants in Wastewater by Advanced Oxidation Process Over Iron-Based MOFs and Their Composites [J]. Progress in Chemistry, 2021, 33(3): 471-489.
[11] Hongfei Bi, Jinsong Liu, Zhengying Wu, He Suo, Xueliang Lv, Yunlong Fu. Modified Synthesis and Photocatalytic Properties of Indium Zinc Sulfide [J]. Progress in Chemistry, 2021, 33(12): 2334-2347.
[12] Danqing Zou, Cong Wang, Fei Xiao, Yuchen Wei, Lin Geng, Lei Wang. Janus Particles Applied in Environmental Detection [J]. Progress in Chemistry, 2021, 33(11): 2056-2068.
[13] Yong Feng, Yu Li, Guangguo Ying. Micro-Interface Electron Transfer Oxidation Based on Persulfate Activation [J]. Progress in Chemistry, 2021, 33(11): 2138-2149.
[14] Lin Gu, Kai Zhang, Haixiang Yu, Guangxia Dong, Xingbo Qiao, Haifeng Wen. Synthesis of Sludge Carbon-Based Catalytic Materials and Their Application in Water Environment [J]. Progress in Chemistry, 2020, 32(9): 1412-1426.
[15] Zhi Zhang, Chentao Zou, Shuijin Yang. Fabrication of Semiconductor Composite Materials Based on Bismuth Tungstate/Molybdate and Their Application in Photocatalytic Degradation [J]. Progress in Chemistry, 2020, 32(9): 1427-1436.