中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (7): 831-840 DOI: 10.7536/PC150137 Previous Articles   Next Articles

• Review and comments •

Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization

Chen Siyuan, Dong Xu, Zha Liusheng*   

  1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received: Revised: Online: Published:
PDF ( 1240 ) Cited
Export

EndNote

Ris

BibTeX

Atom transfer radical polymerization (ATRP) is by far one of the most promising living /controlled radical polymerization methods in industrial application. It is able to get the polymers with narrow molecular weight distribution and regular chain structure. Furthermore, many kinds of monomers can be polymerized by ATRP, and its reaction condition is mild and easy to control. Surface-initiated atom transfer radical polymerization (SI-ATRP) is a good method for grafting the polymers with regular structure on the surfaces of inorganic materials or synthesizing inorganic/organic composite materials. In recent years, SI-ATRP technique has attracted much attention from domestic and abroad researchers. In this paper, the reaction process and characteristics of SI-ATRP are elaborated, and then the progress in preparation of inorganic/organic core-shell structured composite nanoparticles based on non-metal oxide nanoparticles, metal oxide nanoparticles, metal nanoparticles, and other inorganic nanoparticle as core by SI-ATRP is highly reviewed. Finally, the outlook on future development of SI-ATRP for synthesizing inorganic/organic composite nanoparticles is presented.

Contents
1 Introduction
2 Reaction process and characteristics of SI-ATRP
3 Grafting polymer on different nanoparticles by SI-ATRP
3.1 Inorganic/organic core-shell structured composite nanoparticles based on non-metal oxide nanoparticle as core
3.2 Inorganic/organic core-shell structured composite nanoparticles based on metal oxide nanoparticle as core
3.3 Inorganic/organic core-shell structured composite nanoparticles based on metal nanoparticle as core
3.4 Inorganic/organic core-shell structured composite nanoparticles based on other inorganic nanoparticle as core
4 Conclusion and outlook

CLC Number: 

[1] Thanh N T K, Green L A W. Nano Today, 2010, 5(3): 213.
[2] Auffan M, Rose J, Bottero J Y, Lowry G V, Jolivet J P, Wiesner M R. Nat. Nanotechnol., 2009, 4(10): 634.
[3] Choi J, Hui C M, Schmitt M, Pietrasik J, Margel S, Matyjazsewski K, Bockstaller M R. Langmuir, 2013, 29(21): 6452.
[4] 董旭(Dong X), 刘晓云(Liu X Y), 查刘生(Zha L S). 化学进展(Progress in Chemistry), 2013, 25(12): 2038.
[5] Banerjee S, Paira T K, Mandal T K. Polym. Chem., 2014, 5(14): 4153.
[6] Matyjaszewski K, Miller P J, Shukla N, Immaraporn B, Gelman A, Luokala B B, Siclovan T M, Kickelbick G, Vallant T, Hoffmann H, Pakula T. Macromolecules, 1999, 32(26): 8716.
[7] Chen Y Z, Yuan X Y. Chemical Research in Chinese Universities, 2014, 30(2): 339.
[8] Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem. Mater., 2014, 26(1): 745.
[9] Bach L G, Islam M R, Vo T S, Kim S K, Lim K T. Journal of Colloid and Interface Science, 2013, 394: 132.
[10] Leone G, Giovanella U, Bertini F, Hoseinkhani S, Porzio W, Ricci G, Botta C, Galeotti F. J. Mater. Chem. C, 2013, 1(40): 6585.
[11] Barbey R, Lavanant L, Paripovic D, Schuewer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109(11): 5437.
[12] Pearson R G. Coordination Chemistry Reviews, 1990, 100403.
[13] Choi J, Hui C M, Pietrasik J, Dong H, Matyjaszewski K, Bockstaller M R. Soft Matter, 2012, 8(15): 4072.
[14] Ejaz M, Yamamoto S, Ohno K, Tsujii Y, Fukuda T. Macromolecules, 1998, 31(17): 5934.
[15] Bombalski L, Min K, Dong H, Tang C, Matyjaszewski K. Macromolecules, 2007, 40(21): 7429.
[16] Koylu D, Carter K R. Macromolecules, 2009, 42(22): 8655.
[17] Kruk M, Dufour B, Celer E B, Kowalewski T, Jaroniec M, Matyjaszewski K. Macromolecules, 2008, 41(22): 8584.
[18] Turgman-Cohen S, Genzer J. Macromolecules, 2010, 43(22): 9567.
[19] Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Surface-Initiated Polymerization I, 2006, 1971.
[20] Gao X, Feng W, Zhu S P, Sheardown H, Brash J L. Macromol. React. Eng., 2010, 4(3/4): 235.
[21] Pietrasik J, Hui C M, Chaladaj W, Dong H, Choi J, Jurczak J, Bockstaller M R, Matyjaszewski K. Macromol. Rapid Commun., 2011, 32(3): 295.
[22] Tchoul M N, Dalton M, Tan L S, Dong H, Hui C M, Matyjaszewski K, Vaia R A. Polymer, 2012, 53(1): 79.
[23] Pyun J, Jia S J, Kowalewski T, Patterson G D, Matyjaszewski K. Macromolecules, 2003, 36(14): 5094.
[24] Ignatova M, Voccia S, Gilbert B, Markova N, Cossement D, Gouttebaron R, Jerome R, Jerome C. Langmuir, 2006, 22(1): 255.
[25] Xu C, Wu T, Mei Y, Drain C M, Batteas J D, Beers K L. Langmuir, 2005, 21(24): 11136.
[26] Mori H, Seng D C, Zhang M F, Muller A H E. Langmuir, 2002, 18(9): 3682.
[27] Berger S, Synytska A, Ionov L, Eichhorn K J, Stamm M. Macromolecules, 2008, 41(24): 9669.
[28] Dong H C, Zhu M Z, Yoon J A, Gao H F, Jin R C, Matyjaszewski K. J. Am. Chem. Soc., 2008, 130(39): 12852.
[29] Huang X Y, Wirth M J. Anal. Chem., 1997, 69(22): 4577.
[30] Matyjaszewski K, Tsarevsky N V. J. Am. Chem. Soc., 2014, 136(18): 6513.
[31] 刘艳丽(Liu Y L), 刘芳(Liu F), 张小松(Zhang X S). 湖南工程学院学报(Journal of Hunan Inst itute of Engineering), 2009, 19(1): 74.
[32] 刘春华(Liu C H), 范保林(Fan B L), 刘榛(Liu Z). 高分子通报(Polymer Bulletin), 2009, 464.
[33] Valentin J L, Diaz A R, Rueda L I, Hernandez L G. J. Appl. Polym. Sci., 2004, 91(3): 1489.
[34] Mora-Barrantes I, Valentin J L, Rodriguez A, Quijada-Garrido I, Paris R. J. Mater. Chem., 2012, 22(4): 1403.
[35] 唐龙祥(Tang L X), 范保林(Fan B L), 刘春华(Liu C H), 张奎(Zhang K), 王平华(Wang P H). 高分子材料科学与工程(Polymer Materals Science and Engineering), 2011, 27(5): 21.
[36] Hui C M, Dang A, Chen B, Yan J, Konkolewicz D, He H, Ferebee R, Bockstaller M R, Matyjaszewski K. Macromolecules, 2014, 47(16): 5501.
[37] Huang H P, He L. RSC Advances, 2014, 4(25): 13108.
[38] Ohno K, Tabata H, Tsujii Y. Colloid Polym. Sci., 2013, 291(1): 127.
[39] Wu T, Zou G, Hu J M, Liu S Y. Chem. Mater., 2009, 21(16): 3788.
[40] Mu B, Liu P, Tang Z B, Du P C, Dong Y. Nanomed. Nanotechnol. Biol. Med., 2011, 7(6): 789.
[41] Panahian P, Salami-Kalajahi M, Hosseini M S. J. Polym. Res., 2014, 21(6): 455.
[42] Fotiadou S, Karageorgaki C, Chrissopoulou K, Karatasos K, Tanis I, Tragoudaras D, Frick B, Anastasiadis S H. Macromolecules, 2013, 46(7): 2842.
[43] Wang P, Zhou Y N, Luo J S, Luo Z H. Polym. Chem., 2014, 5(3): 882.
[44] Kao J, Thorkelsson K, Bai P, Rancatore B J, Xu T. Chem. Soc. Rev., 2013, 42(7): 2654.
[45] McCarthy J R, Weissleder R. Adv. Drug Delivery Rev., 2008, 60(11): 1241.
[46] 夏烈文(Xia L W),吕宝强(Lv B Q),刘凡(Liu F),刘钟燕(Liu Z Y),李静(Li J),罗军(Luo J). 化学研究与应用(Chemical Research and Application), 2013, 25(5): 736.
[47] Eyiler E, Walters K B. Colloids Surf. A: Physicochemical and Engineering Aspects, 2014, 444: 321.
[48] Shaonan L, Meiqin Z, Changjing C, Zhigang Z. J. Nanopart. Res., 2014, 16(5): 2393.
[49] Liu Y L, Huang Y Y, Liu J Z, Wang W Z, Liu G Q, Zhao R. J. Chromatogr. A, 2012, 1246(2012): 15.
[50] Liu J Z, Wang W Z, Xie Y F, Huang Y Y, Liu Y L, Liu X J, Zhao R, Liu G Q, Chen Y. J. Mater. Chem., 2011, 21(25): 9232.
[51] Smith A M, Duan H, Mohs A M, Nie S. Adv. Drug Delivery Rev., 2008, 60(11): 1226.
[52] Balti I, Barrere A, Gueguen V, Poussard L, Pavon-Djavid G, Meddahi-Pelle A, Rabu P, Smiri L S, Jouini N, Chaubet F. J. Nanopart. Res., 2012, 14(12): 1266.
[53] Nordell P, Nawaz S, Azhdar B, Hillborg H, Gedde U W. J. Appl. Polym. Sci., 2012, 125(2): 975.
[54] Wåhlander M, Nilsson F, Larsson E, Tsai W-C, Hillborg H, Carlmark A, Gedde U W, Malmström E. Polymer, 2014, 55(9): 2125.
[55] Abou El-Nour K M M, Eftaiha A, Al-Warthan A, Ammar R A A. Arabian J. Chem., 2010, 3(3): 135.
[56] Sardar R, Funston A M, Mulvaney P, Murray R W. Langmuir, 2009, 25(24): 13840.
[57] Lee J E, Chung K, Jang Y H, Jang Y J, Kochuveedu S T, Li D, Kim D H. Anal. Chem., 2012, 84(15): 6494.
[58] Li D X, He Q, Cui Y, Wang K W, Zhang X M, Li J B. Chem. Eur. J., 2007, 13(8): 2224.
[59] Strozyk M S, Chanana M, Pastoriza-Santos I, Perez-Juste J, Liz-Marzan L M. Adv. Funct. Mater., 2012, 22(7): 1436.
[60] Huang X, Neretina S, El-Sayed M A. Adv. Mater., 2009, 21(48): 4880.
[61] Wei Q S, Ji J, Shen J C. Macromol. Rapid Commun., 2008, 29(8): 645.
[62] Wei Q S, Zhou W B, Ji J, Shen J C. Nanoscale Res. Lett. Letters, 2009, 4(1): 84.
[63] Chen R X, Maclaughlin S, Botton G, Zhu S P. Polymer, 2009, 50(18): 4293.
[64] Zeltner M, Grass R N, Schaetz A, Bubenhofer S B, Luechinger N A, Stark W J. J. Mater. Chem., 2012, 22(24): 12064.
[65] Yang X W, Zeng Y W, Cai T X, Hu Z X. Appl. Surf. Sci., 2012, 258(19): 7365.
[66] Zhang X H, Chen H C, Ma Y H, Zhao C W, Yang W T. Appl. Surf. Sci., 2013, 277(2013): 121.
[67] Zhu J Y, Guo N N, Zhang Y T, Yu L, Liu J D. J. Membr. Sci., 2014, 465: 91.
[68] Nie C X, Ma L, Xia Y, He C, Deng J, Wang L R, Cheng C, Sun S D, Zhao C S. J. Membr. Sci., 2015, 475: 455.
[69] Yin J, Zhang Y, Zhang Y X. J. Appl. Polym. Sci., 2005, 97(5): 1922.
[70] Liu J H, Feng N, Chang S Q, Kang H L. Appl. Surf. Sci., 2012, 258(16): 6127.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[3] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[4] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[5] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[6] Zhang Dongjie, Zhang Congyun, Lu Ya, Hao Yaowu, Liu Yaqing. Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method [J]. Progress in Chemistry, 2015, 27(8): 1057-1064.
[7] Li Lei, Li Yanxing, Yao Yao, Yao Lianghong, Ji Weijie, Au Chak-Tong. Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.
[8] Chen Lifeng, Shi Jing, Zhang Yahong, Tang Yi. Core-Shell Zeolite Composites and Reactors [J]. Progress in Chemistry, 2012, 24(07): 1262-1269.
[9] Li Guanglu, He Tao, Li Xuemei. Preparation and Applications of Core-Shell Structured Nanocomposite Materials: the State-of-the-Art [J]. Progress in Chemistry, 2011, 23(6): 1081-1089.
[10] Liu Bin, Liao Shijun, Liang Zhenxing. Core-Shell Structure: The Best Way to Achieve Low-Pt Fuel Cell Electrocatalysts [J]. Progress in Chemistry, 2011, 23(5): 852-859.
[11] Cheng Chuanjie, Shen Liang, Fu Quanlei, Gong Shanshan. Soap-Free Living/Controlled Radical Emulsion Polymerization [J]. Progress in Chemistry, 2011, 23(4): 791-799.
[12] . Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2010, 22(11): 2079-2088.
[13] . Preparation and Application of Magnetic Core-shell Mesoporous Silica Microspheres [J]. Progress in Chemistry, 2010, 22(06): 1116-1124.
[14] Shi Jing Ren Nan Zhang Yahong Tang Yi. Advances in the Research of Microcapsular Reactor [J]. Progress in Chemistry, 2009, 21(09): 1750-1756.
[15] Ren Manman|Zhou Zhen**|Gao Xueping| Yan Jie. Core-shell Materials for Lithium Ion Batteries [J]. Progress in Chemistry, 2008, 20(05): 771-777.