中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1057-1064 DOI: 10.7536/PC150140 Previous Articles   Next Articles

Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method

Zhang Dongjie1, Zhang Congyun1, Lu Ya1, Hao Yaowu*2, Liu Yaqing*1   

  1. 1. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China;
    2. Department of Materials Science and Engineering, The University of Texas at Arlington, Arlington 76019, USA
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the International Scientific and Technological Cooperation Projects in Shanxi Province (No. 2014081006?2).
PDF ( 3339 ) Cited
Export

EndNote

Ris

BibTeX

Au@Ag core-shell nanoparticles have received considerable attention for recent years because of the localized surface plasmon resonance (LSPR). At present, Au@Ag core-shell nanoparticles have been widely used in applications related to photonics, catalysis, information storage, chemical/biological sensing. Due to the well controlled size and morphology of Ag shell, seed-mediated growth method has become the most practical approach to synthesize Au@Ag core-shell nanoparticles. This review provides a short summary of some main factors, such as the morphology and concentration of Au seeds, concentration of AgNO3, capping agents, reductants and some other factors, which affect the size, morphology, the thickness and uniform coating of Ag shell during the seed-mediated growth of Au@Ag core-shell nanoparticles. Recent studies have shown that Au@Ag core-shell nanoparticles would benefit the further development of the surface-enhanced Raman scattering (SERS).

Contents
1 Introduction
2 Classification of Au@Ag core-shell nanoparticles
3 Preparation of Au@Ag core-shell nanoparticles by seed-mediated growth method
3.1 Precursors
3.2 Capping agents
3.3 Reductants
3.4 Some other factors
4 Conclusion

CLC Number: 

[1] Chaudhuri R G, Paria S. Chem. Rev., 2012, 112: 2373.
[2] Wang A, Peng Q, Li Y D. Chem. Mater., 2011, 23 (13): 3217.
[3] Li Q, Jiang R, Ming T, Fang C H, Wang J F. Nanoscale, 2012, 4: 7070.
[4] Li J, Zheng Y, Zeng J, Xia Y N. Chemistry-A European Journal, 2012, 18(26): 8150.
[5] Zhang K, Xiang Y, Wu X, Feng L L, He W W, Liu J B, Zhou W Y, Xie S S. Langmuir, 2009, 25: 1162.
[6] Yancey D F, Carino E V, Crooks R M. J. Am. Chem. Soc., 2010, 132: 10988.
[7] Corthey G, Giovanetti L J, Ramallo-López J M, Salvarezza R C. ACS Nano, 2010, 4(6): 3413.
[8] Zhang W Q, Goh H Y, Firdoz S, Lu X M. Chem. Eur. J., 2013, 19: 12732.
[9] Hsu C, Huang C W, Hao Y W, Liu F Q. Electrochem. Commun., 2012, 23: 133.
[10] Hsu C, Huang C W, Hao Y W, Liu F Q. Nanoscale Res. Lett., 2013, 8: 113.
[11] Sun L, Li Q H, Tang W J, Di J W, Wu Y. Microchim. Acta, 2014, 181: 1991.
[12] Tsao Y C, Rej S, Chiu C Y, Huang M H. J. Am. Chem. Soc., 2014, 136 (1): 396.
[13] Hao J R, Xiong B, Cheng X D, He Y, Yeung E S. Anal. Chem., 2014, 86: 4663.
[14] Tsuji M, Maeda Y, Hikino S, Kumagae H, Matsunaga M, Tang X L, Matsuo R, Ogino M, Jiang P. Cryst. Growth. Des., 2009, 9: 4700.
[15] Wu Y, Jiang P, Jiang M, Wang W T, Guo C F, Xie S S, Wang Z L. Nanotechnology, 2009, 20: 305602.
[16] Cho E C, Camargo P H C, Xia Y N. Adv. Mater., 2010, 22: 744.
[17] Snchez-Iglesias A, Carbó-Argibay E, Glaria A, Rodríguez-Gonzlez B, Pérez-Juste J, Pastoriza-Santo I, Liz-Marzn L M. Chem. Eur. J., 2010, 16: 5558.
[18] Wu H L, Chen C H, Huang M H. Chem. Mater., 2009, 21 (1): 110.
[19] Li N, Zhao P X, Astruc D. Angew. Chem. Int. Ed., 2014, 53: 1756.
[20] Ma Y Y, Li W Y, Cho E C, Li Z Y, Yu T, Zeng J, Xie Z X, Xia Y N. ACS Nano, 2010, 4(11): 6725.
[21] Gong J X, Zhou F, Li Z Y, Tang Z Y. Langmuir, 2012, 28: 8959.
[22] Hong S, Choi Y, Park S. Chem. Mater., 2011, 23: 5375.
[23] Zhu J, Zhang F, Li J J, Zhao J W. Gold Bull., 2014, 47: 47.
[24] Khlebtsov B N, Khanadeev V A, Tsvetkov M Y, Bagratashvili V N, Khlebtsov N G. J. Phys. Chem. C, 2013, 117: 23162.
[25] Zheng Y Q, Zhong X L, Li Z Y, Xia Y N. Part. Part. Syst. Char., 2014, 31: 266.
[26] Wang Y C, Black K L, Luehmann H, Li W Y, Zhang Y, Cai X, Wan D H, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y J, Xia Y N. ACS Nano, 2013, 7 (3): 2068.
[27] Ma Y Y, Zeng J, Li W Y, McKiernan M, Xie Z X, Xia Y N. Adv. Mater., 2010, 22: 1930.
[28] Chung P J, Lyu L M, Huang M H. Chem. Eur. J., 2011, 17: 9746.
[29] Wu H L, Kuo C H, Huang M H. Langmuir, 2010, 26(14): 12307.
[30] Yu K, You G J, Polavarapu L, Xu Q H. J. Phys. Chem. C, 2011, 115: 14000.
[31] Tsuru Y, Nakashima N, Niidome Y. Optics Commun., 2012, 285: 3419.
[32] Tsuji M, Nishio M, Jiang P, Miyamae N, Lima S, Matsumoto K, Ueyama D, Tang X L. Colloids and Surfaces A: Physicochemical Engineering Aspects, 2008, 317: 247.
[33] Tsuji M, Ogino M, Matsunaga M, Miyamae N, Matsuo R, Nishio M, Alam M J. Crystal Growth & Design, 2010, 10: 4085.
[34] Park G, Seo D, Jung J, Ryu S, Song H. J. Phys. Chem. C, 2011, 115: 9417.
[35] Samal A K, Polavarapu L, Rodal C S, Liz L M, Pérez-Juste J, Pastoriza I. Langmuir, 2013, 29: 15076.
[36] Shankar C, Dao A T N, Singh P, Higashimine K, Mott D M, Maenosono S. Nanotechnology, 2012, 23: 245704.
[37] Khlebtsov B, Khanadeev V, Pylaev T, Khlebtsov N. J. Phys. Chem. C, 2011, 115: 6317.
[38] Ko F H, Tai M R, Liu F K, Chang Y C. Sensors and Actuators B, 2015, 211: 283.
[39] Tsuji M, Nakamura N, Ogino M, Ikedo K, Matsunaga M. CrystEngComm, 2012, 14: 7639.
[40] Lu L, Burkey G, Halaciuga I, Goia D V. Journal of Colloid and Interface Science, 2013, 392: 90.
[41] Okuno Y, Nishioka K, Kiya A, Nakashima N, Ishibashi A, Niidome Y. Nanoscale, 2010, 2: 1489.
[42] Banerjee M, Sharma S, Chattopadhyay A, Ghosh S S. Nanoscale, 2011, 3: 5120.
[43] Huo D, He J, Li H, Yu H P, Shi T T, Feng Y H, Zhou Z Y, Hu Y. Colloids and Surfaces B: Biointerfaces, 2014, 117: 29.
[44] Wang H, Liu J, Wu X, Tong Z H, Deng Z X. Nanotechnology, 2013, 24: 205102.
[45] Yang X, Wang Y, Liu Y W, Jiang X. Electrochim. Acta, 2013, 108: 39.
[46] Banerjee M, Dey B, Talukdar J, Kalita M C. Energy, 2014, 69: 695.
[47] Baek S, Park G, Noh J, Cho C, Lee C H, Seo M K, Song H, Lee J Y. ACS Nano, 2014, 8: 3302.
[48] Guo P Z, Sikdar D, Huang X Q, Si K J, Xiong X, Gong S, Yap L W, Premaratne M, Cheng W L. Nanoscale, 2015, 7: 2862.
[49] Contreras C R, Dawson C, Formanek P, Fischer D, Simon F, Janke A, Uhlmann P, Stamm M. Chem. Mater., 2013, 25: 158.
[50] Yang Y, Liu J Y, Fu Z W, Qin D. J. Am. Chem. Soc., 2014, 136: 8153.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Hao Chen, Xu Xu, Chaonan Jiao, Hao Yang, Jing Wang, Yinxian Peng. Fabrication of Multifunctional Core-Shell Structured Nanoreactors and Their Catalytic Performances [J]. Progress in Chemistry, 2022, 34(9): 1911-1934.
[3] Feng Lu, Ting Zhao, Xiaojun Sun, Quli Fan, Wei Huang. Design of NIR-Ⅱ Emissive Rare-earth Nanoparticles and Their Applications for Bio-imaging [J]. Progress in Chemistry, 2022, 34(6): 1348-1358.
[4] Qin Zhong, Shuai Zhou, Xiangmei Wang, Wei Zhong, Chendi Ding, Jiajun Fu. Construction of Mesoporous Silica Based Smart Delivery System and its Therapeutic Application in Various Diseases [J]. Progress in Chemistry, 2022, 34(3): 696-716.
[5] Dandan Zhang, Qi Wu, Guangbo Qu, Jianbo Shi, Guibin Jiang. Quantitative Analysis of Metal Nanoparticles in Unicellular Aquatic Organisms [J]. Progress in Chemistry, 2022, 34(11): 2331-2339.
[6] Dong Yang, Keyi Gao, Baiqin Yang, Lei Lei, Lixia Wang, Chaohua Xue. Classification of Microfluidic System and Applications in Nanoparticles Synthesis [J]. Progress in Chemistry, 2021, 33(3): 368-379.
[7] Pingping Zhao, Junxing Yang, Jianhui Shi, Jingyi Zhu. Construction and Application of Dendrimer-Based SPECT Imaging Agent [J]. Progress in Chemistry, 2021, 33(3): 394-405.
[8] Chen Liu, Qiangxiang Li, Di Zhang, Yujie Li, Jinquan Liu, Xilin Xiao. Preparation and Application of MCM-41 Mesoporous Silica in the DNA Biosensors [J]. Progress in Chemistry, 2021, 33(11): 2085-2102.
[9] Ding Jingjing, Lili Huang, Haiyan Xie. Application of Nanoparticles-Based Chemiluminescence in Diagnosis and Treatment of Inflammation and Tumor [J]. Progress in Chemistry, 2020, 32(9): 1252-1263.
[10] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[11] Jianlin Shi, Zile Hua. Condensed State Chemistry in the Synthesis of Inorganic Nano- and Porous Materials [J]. Progress in Chemistry, 2020, 32(8): 1060-1075.
[12] Tianyou Chen, Zihao Wang, Zizheng Xu, Zushun Xu, Zheng Cao. Synthesis and Applications of Dendrimer-Based Inorganic Nanoparticles [J]. Progress in Chemistry, 2020, 32(2/3): 249-261.
[13] Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li. Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application [J]. Progress in Chemistry, 2019, 31(9): 1213-1220.
[14] Rui Bai, Xiaochun Tian, Shuhua Wang, Weifu Yan, Haiyin Gang, Yong Xiao. Noble Metal Nanoparticles Produced by Microorganism [J]. Progress in Chemistry, 2019, 31(6): 872-881.
[15] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.