中文
Announcement
More
Progress in Chemistry 2019, Vol. 31 Issue (9): 1213-1220 DOI: 10.7536/PC190132 Previous Articles   Next Articles

Preparation of the Controllable Core-Shell Structured Electrospun Polymer Fibers and Their Application

Liang Ma, Xuejuan Shi, Xiaoxiao Zhang, Lili Li**()   

  1. Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China
  • Received: Online: Published:
  • Contact: Lili Li
  • About author:
  • Supported by:
    The National Natural Science Foundation of China(No.51103058)
Richhtml ( 31 ) PDF ( 895 ) Cited
Export

EndNote

Ris

BibTeX

Core-shell structured fiber, as a functional composite fiber, has the excellent properties of both core and shell layers. Its special structure and properties greatly broaden the application field of the fibers. Therefore, core-shell structured fiber has become a research hotspot. Electrospinning is an efficient and facile technique for the fabrication of polymer nanofibers, which has attracted much attention in recent years. The method for preparing core-shell structured fibers with controllable structure and morphology is especially useful for guiding its application. The preparation methods of core/shell nanofibers are presented in this review. The methods mainly include single nozzle through phase separation, coaxial electrospinning, emulsion electrospinning, and template method. The major factors for forming the core/shell structure and the effect on the properties of the fibers are discussed in detail. The new research progress of electrospinning core-shell structured fibers in recent years is summarized. The various potential applications in drug controlled release system, tissue engineering scaffold, multifunctional wound dressing, wastewater treatment material, superhydrophobic material, and other fields are also reviewed.

Fig. 1 Electrospinning facility[1]
Fig. 2 Core/shell nanofibers
Fig. 3 Schematic representation of the electrospinning setup[6]
Fig. 4 Schematic of the core/shell nanofiber electrospinning setup[8]
Fig. 5 TEM images of PAN/PVP core/shell structure nanfibers:(a) PAN∶PVP=2∶1;(b) PAN∶PVP=1∶1;(c) PAN∶PVP=1∶2;(d) PAN∶PVP=1∶1;(e) PAN∶PVP=1∶1 without vapor[8]
Fig. 6 Coaxial electrospinning operation:(a) diagram of the coaxial nozzle;(b) core-sheath droplet without bias; and(c)Taylor cone and coaxial jet formation at 12.5 kV[13]
Fig. 7 The proposed mechanism for fiber structural formation[34]
Fig. 8 Schematic figure of core-shell fiber[51]
Fig. 9 Contact angles for PPFEMA-coated PCL mats. From left to right in the inset are representative droplet images on five samples[52]
[1]
侯甲子(Hou J Z), 张万喜(Zhang W X), 管东波(Guan D B), 孙晓平(Sun X P), 李莉莉(Li L L) . 化学进展(Progress in Chemistry), 2012, 24(12):2359.
[2]
Lu Y, Jiang H, Tu K, Wang L . Acta.Biomater., 2009, 5:1562.
[3]
Zhao P, Jiang H, Pan H, Zhu K, Chen W . J. Biomed. Mater. Res. A, 2007, 83:372. https://www.ncbi.nlm.nih.gov/pubmed/17450578

doi: 10.1002/jbm.a.31242 pmid: 17450578
[4]
Zhang Y Z, Venugopal J, Huang Z M, Lim C T, Remakrishna S . Biomacromolecules, 2005, 6:2583. https://www.ncbi.nlm.nih.gov/pubmed/16153095

doi: 10.1021/bm050314k pmid: 16153095
[5]
Mu X, Liu Y, Fang D, Wang Z, Nie J, Ma G . Carbohyd.Polym., 2012, 90:1582.
[6]
Chen G, Fang D, Wang K, Nie J, Ma G . J. Polym. Sci. Pol. Chem., 2015, 53:2298.
[7]
Chen G, Guo J, Nie J, Ma G . Polymer, 2016, 83:12.
[8]
Jiang Y, Fang D, Song G, Nie J, Chen B, Ma G . New J.Chem., 2013, 37:2917.
[9]
Wei M, Kang B, Sung C, Mead J . Macromol. Mater. Eng., 2006, 291:1307.
[10]
Wang M, Fang D, Wang N, Jiang S, Nie J, Yu Q, Ma G . Polymer, 2014, 55:2188.
[11]
Loscertales I G, Barrero A, Guerrero I, Cortijo R, Marquez M, Ganan-Calvo A M . Science, 2002, 295:1695. https://www.ncbi.nlm.nih.gov/pubmed/11872835

doi: 10.1126/science.1067595 pmid: 11872835
[12]
Larsen G, Velarde-Ortiz R, Minchow K, Barrero A, Loscertales I G . J. Am. Chem. Soc., 2003, 125:1154. https://www.ncbi.nlm.nih.gov/pubmed/12553802

doi: 10.1021/ja028983i pmid: 12553802
[13]
Han D, Steckl A J . Langmuir, 2009, 25:9454. https://www.ncbi.nlm.nih.gov/pubmed/19374456

doi: 10.1021/la900660v pmid: 19374456
[14]
Yu J H, Fridrikh S V, Rutledge G C . Adv. Mater., 2004, 16:1562.
[15]
Sun B, Duan B, Yuan X . J. Appl. Polym. Sci., 2006, 102:39.
[16]
Kaerkitcha N, Chuangchote S, Sagawa T . Nanoscale Res. Lett., 2016, 11:186. https://www.ncbi.nlm.nih.gov/pubmed/27067734

doi: 10.1186/s11671-016-1416-7 pmid: 27067734
[17]
Chen R, Huang C, Ke Q, He C, Wang H, Mo X . Colloid. Surface. B, 2010, 79:315.
[18]
Jalaja K, Naskar D, Kundu S C, James N R . Carbohyd. Polym., 2016, 136:1098. https://www.ncbi.nlm.nih.gov/pubmed/26572452

doi: 10.1016/j.carbpol.2015.10.014 pmid: 26572452
[19]
Wu L, Li H, Li S, Li X, Yuan X, Li X, Zhang Y . J. Biomed. Mater. Res. A, 2010, 92:563.
[20]
Xie Q, Jia L N, Xu H Y, Hu X G, Wang W, Jia J . Stem Cells Int., 2016, 5385137. https://www.ncbi.nlm.nih.gov/pubmed/27313626

doi: 10.1155/2016/5385137 pmid: 27313626
[21]
Zhang H, Zhao C G, Zhao Y H, Tang G W, Yuan X Y . Sci. China Chem., 2010, 53:1246.
[22]
Homaeigohar S, Davoudpour Y, Habibi Y, Elbahri M . Nanomaterials, 2017, 7:383.
[23]
Li Y, Xu G, Yao Y, Xue L, Yanilmaz M, Lee H, Zhang X . Solid State Ionics, 2014, 258:67.
[24]
Zhan S, Zhu D, Ren G, Shen Z, Qiu M, Yang S, Yu H, Li Y . ACS Appl. Mater. Interfaces, 2014, 6:16841. https://www.ncbi.nlm.nih.gov/pubmed/25226354

doi: 10.1021/am505751z pmid: 25226354
[25]
Sun Z, Zussman E, Yarin A L, Wendorff J H, Greiner A . Adv. Mater, 2003, 15:1929.
[26]
López-Herrera J M, Barrero A, López A, Loscertales I G, Márquez M . J. Aerosol Sci., 2003, 34:535.
[27]
Wang C, Yan K W, Lin Y D, Hsieh P C H . Macromolecules, 2010, 43:6389.
[28]
Wang X, Wang Q, Huang F, Wei Q . Fiber. Polym., 2016, 17:624.
[29]
Rahimi M, Mokhtari J . J. Ind. Text., 2018, 47:1134. http://journals.sagepub.com/doi/10.1177/1528083716676816

doi: 10.1177/1528083716676816
[30]
Kaerkitcha N, Chuangchote S, Hachiya K, Sagawa T . Polym. J., 2017, 49:497.
[31]
Wang L, Yang H, Hou J, Zhang W, Xiang C, Li L . New J. Chem., 2017, 41:15072.
[32]
Bazilevsky A V, Yarin A L, Megaridis C M . Langmuir, 2007, 23:2311. https://www.ncbi.nlm.nih.gov/pubmed/17266345

doi: 10.1021/la063194q pmid: 17266345
[33]
Xu X, Zhuang X, Chen X, Wang X, Yang L, Jing X . Macromol. Rapid Commun., 2006, 27:1637.
[34]
Li Y, Ko F K, Hamad W Y . Biomacromolecules, 2013, 14:3801. https://www.ncbi.nlm.nih.gov/pubmed/23789830

doi: 10.1021/bm400540v pmid: 23789830
[35]
Pal P, Srivas P K, Dadhich P, Das B, Maulik D, Dhara S . ACS Biomater. Sci. Eng., 2017, 3:3563. https://pubs.acs.org/doi/10.1021/acsbiomaterials.7b00681

doi: 10.1021/acsbiomaterials.7b00681
[36]
Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W . J. Control. Release, 2005, 108:237. https://www.ncbi.nlm.nih.gov/pubmed/16153737

doi: 10.1016/j.jconrel.2005.08.006 pmid: 16153737
[37]
He M, Jiang H, Wang R, Xie Y, Zhao C . J. Colloid Interf. Sci., 2017, 490:270.
[38]
Yu D G, Wang X, Li X Y, Chian W, Li Y, Liao Y Z . Acta Biomater., 2013, 9:5665. https://www.ncbi.nlm.nih.gov/pubmed/23099302

doi: 10.1016/j.actbio.2012.10.021 pmid: 23099302
[39]
Verreck G, Chun I, Peeters J, Rosenblatt J, Brewster M E . Pharm. Res., 2003, 20:810.
[40]
Gatti J W, Smithgall M C, Paranjape S M, Rolfes R J, Paranjape M . Biomed Microdevices, 2013, 15:887. https://www.ncbi.nlm.nih.gov/pubmed/23764950

doi: 10.1007/s10544-013-9777-5 pmid: 23764950
[41]
Rubert M, Li Y F, Dehli J, Taskin M B, Besenbacher F, Chen M . RSC Adv., 2014, 4:51537. http://xlink.rsc.org/?DOI=C4RA08358J

doi: 10.1039/C4RA08358J
[42]
Zhang Y Z, Wang X, Feng Y, Li J, Lim C T, Ramakrishna S . Biomacromolecules, 2006, 7:1049. https://www.ncbi.nlm.nih.gov/pubmed/16602720

doi: 10.1021/bm050743i pmid: 16602720
[43]
Xie Z, Paras C B, Weng H, Punnakitikashem P, Su L C, Vu K, Tang L, Yang J, Nguyen K T . Acta Biomater., 2013, 9:9351. https://www.ncbi.nlm.nih.gov/pubmed/23917148

doi: 10.1016/j.actbio.2013.07.030 pmid: 23917148
[44]
Cao H, Jiang X, Chai C, Chew S Y . J. Control. Release, 2010, 144:203.
[45]
Su Y, Su Q, Liu W, Lim M, Venugopal J R, Mo X, Ramakrishna S, Al-Deyab S S, El-Newehy M . Acta Biomater., 2012, 8:763. https://www.ncbi.nlm.nih.gov/pubmed/22100346

doi: 10.1016/j.actbio.2011.11.002 pmid: 22100346
[46]
Ye L, Cao J, Chen L, Geng X, Zhang A Y, Guo L R, Gu Y Q, Feng Z G . J. Biomed. Mater. Res. A, 2015, 103:3863. https://www.ncbi.nlm.nih.gov/pubmed/26123627

doi: 10.1002/jbm.a.35531 pmid: 26123627
[47]
Zhang J, Qiu K, Sun B, Fang J, Zhang K, EI-Hamshary H, Al-Deyab S S, Mo X . J. Mater. Chem. B, 2014, 2:7945. https://www.ncbi.nlm.nih.gov/pubmed/32262084

doi: 10.1039/c4tb01185f pmid: 32262084
[48]
Nagiah N, Madhavi L, Anitha R, Anandan C, Srinivasan N T, Sivagnanam U T . Mat. Sci. Eng. C-Mater.Mater., 2013, 33:4444.
[49]
Horner C B, Ico G, Johnson J, Zhao Y, Nam J . J. Mech. Behav. Biomed., 2016, 59:207. https://www.ncbi.nlm.nih.gov/pubmed/26774618

doi: 10.1016/j.jmbbm.2015.12.034 pmid: 26774618
[50]
Elsner J J, Zilberman M . Acta Biomater., 2009, 5:2872. https://www.ncbi.nlm.nih.gov/pubmed/19416766

doi: 10.1016/j.actbio.2009.04.007 pmid: 19416766
[51]
Wei Q, Xu F, Xu X, Geng X, Ye L, Zhang A, Feng Z . Front. Mater. Sci., 2016, 10:113.
[52]
Ma M, Mao Y, Gupta M, Gleason K K, Rutledge G C . Macromolecules, 2005, 38:9742.
[53]
Muthiah P, Hsu S H, Sigmund W . Langmuir, 2010, 26:12483. https://www.ncbi.nlm.nih.gov/pubmed/20614895

doi: 10.1021/la100748g pmid: 20614895
[54]
Ma W, Guo Z, Zhao J, Yu Q, Wang F, Han J, Pan H, Yao J, Zhang Q, Samal S K, De Smedt S C, Huang C . Sep. Purif. Technol., 2017, 177:71.
[55]
Bedford N M, Steckl A J . ACS Appl. Mater. Interfaces, 2010, 2:2448. https://www.ncbi.nlm.nih.gov/pubmed/30576099

doi: 10.1021/acsami.8b21027 pmid: 30576099
[56]
Wang J, Pan K, Giannelis E P, Cao B . RSC Adv., 2013, 3:8978.
[57]
Wang J, Pan K, He Q, Cao B . J. Hazard. Mater., 2013, 244:121. https://www.ncbi.nlm.nih.gov/pubmed/23246947

doi: 10.1016/j.jhazmat.2012.11.020 pmid: 23246947
[58]
Wen H F, Yang C, Yu D G, Li X Y, Zhang D F . Chem. Eng. J., 2016, 290:263.
[59]
Chang Z, Zeng J . Macromol. Chem. Phys., 2016, 217:1007.
[60]
Kang Y L, Zhang J, Wu G, Zhang M X, Chen S C, Wang Y Z . ACS Sustainable Chem. Eng., 2018, 6:11783.
[61]
Li Y, Zhao Y, Lu X, Zhu Y, Jiang L . Nano Res., 2016, 9:2034.
[62]
Xue R, Behera P, Xu J, Viapiano M S, Lannutti J J . Sensor. Actuat. B-Chem., 2014, 192:697. https://www.ncbi.nlm.nih.gov/pubmed/25006274

doi: 10.1016/j.snb.2013.10.084 pmid: 25006274
[63]
Lin M F, Xiong J, Wang J, Parida K, Lee P S . Nano Energy, 2018, 44:248.
[64]
Park S H, Kim B K, Lee W J . J. Power Sources, 2013, 239:122.
[65]
Lu X, Shen C, Zhang Z, Barrios E, Zhai L . ACS Appl. Mater. Inter., 2018, 10:4041. https://www.ncbi.nlm.nih.gov/pubmed/29297674

doi: 10.1021/acsami.7b12997 pmid: 29297674
[66]
Zhou X, Shang C, Gu L, Dong S, Chen X, Han P, Li L, Yao J, Liu Z, Xu H, Zhu Y, Cui G . ACS Appl. Mater. Interfaces, 2011, 3:3058. https://www.ncbi.nlm.nih.gov/pubmed/21728351

doi: 10.1021/am200564b pmid: 21728351
[67]
Peng X, Santulli A C, Sutter E, Wong S S . Chem. Sci., 2012, 3:1262.
[68]
Zhang M, Huang X, Xin H, Li D, Zhao Y, Shi L, Lin Y, Yu J, Yu Z, Zhu C, Xu J . Appl. Surf. Sci., 2019, 473:352.
[69]
Korina E, Stoilova O, Manolova N, Rashkov I . J. Environ. Chem. Eng., 2018, 6:2075.
[70]
Liu K, Liu C, Hsu P C, Xu J, Kong B, Wu T, Zhang R, Zhou G, Huang W, Sun J, Cui Y . ACS Cent. Sci., 2018, 4:894. https://www.ncbi.nlm.nih.gov/pubmed/30062118

doi: 10.1021/acscentsci.8b00285 pmid: 30062118
[71]
Liu Q, Zhu J, Zhang L, Qiu Y . Renew. Sust. Energ. Rev., 2018, 81:1825.
[1] Chunyi Ye, Yang Yang, Xuexian Wu, Ping Ding, Jingli Luo, Xianzhu Fu. Preparation and Application of Palladium-Copper Nano Electrocatalysts [J]. Progress in Chemistry, 2022, 34(9): 1896-1910.
[2] Fengqi Liu, Yonggang Jiang, Fei Peng, Junzong Feng, Liangjun Li, Jian Feng. Preparation and Application of Ultralight Nanofiber Aerogels [J]. Progress in Chemistry, 2022, 34(6): 1384-1401.
[3] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[4] Xiangye Li, Tianjiao Bai, Xin Weng, Bing Zhang, Zhenzhen Wang, Tieshi He. Application of Electrospun Fibers in Supercapacitors [J]. Progress in Chemistry, 2021, 33(7): 1159-1174.
[5] Lei Zhu, Jianan Wang, Jianwei Liu, Ling Wang, Wei Yan. Applications of Electrospun One-Dimensional Nanomaterials in Gas Sensors [J]. Progress in Chemistry, 2020, 32(2/3): 344-360.
[6] Zhenjie Li, Du Zhong, Jie Zhang, Jinwei Chen, Gang Wang, Ruilin Wang. Silicon Nanoparticles/Carbon Composites for Lithium-Ion Battery [J]. Progress in Chemistry, 2019, 31(1): 201-209.
[7] Xie Zheng, Yifan Zhou, Siyuan Chen, Xiaoyun Liu, Liusheng Zha. Stimuli-Responsive Electrospun Nanofibers [J]. Progress in Chemistry, 2018, 30(7): 958-975.
[8] Botian Li, Xing Wen, Liming Tang. Preparation of One-Dimensional Polymer-Inorganic Composite Nanomaterials [J]. Progress in Chemistry, 2018, 30(4): 338-348.
[9] Yongyin Kang, Zhicheng Song, Peisheng Qiao, Xiangpeng Du, Fei Zhao. Research and Application of Photo-Luminescent Colloidal Quantum Dots [J]. Progress in Chemistry, 2017, 29(5): 467-475.
[10] Jiang Min, Wang Min, Wei Shiyong, Chen Zhibao, Mu Shichun. Aligned Nanofibers Based on Electrospinning Technology [J]. Progress in Chemistry, 2016, 28(5): 711-726.
[11] Meng Depeng, Wu Juntao. Adsorption and Separation Materials Produced by Electrospinning [J]. Progress in Chemistry, 2016, 28(5): 657-664.
[12] Zhang Dongjie, Zhang Congyun, Lu Ya, Hao Yaowu, Liu Yaqing. Preparation of Au@Ag Core-Shell Nanoparticles through Seed-Mediated Growth Method [J]. Progress in Chemistry, 2015, 27(8): 1057-1064.
[13] Chen Siyuan, Dong Xu, Zha Liusheng. Inorganic/Organic Core-Shell Composite Nanoparticles by Surface-Initiated Atom Transfer Radical Polymerization [J]. Progress in Chemistry, 2015, 27(7): 831-840.
[14] Gong Xue, Yang Jinlong, Jiang Yulin, Mu Shichun. Application of Electrospinning Technique in Power Lithium-Ion Batteries [J]. Progress in Chemistry, 2014, 26(01): 41-47.
[15] Li Lei, Li Yanxing, Yao Yao, Yao Lianghong, Ji Weijie, Au Chak-Tong. Progress and Prospective in Fabrication and Application of Core-Shell Structured Nanomaterials in Catalytic Chemistry [J]. Progress in Chemistry, 2013, 25(10): 1681-1690.