中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (8): 1093-1101 DOI: 10.7536/PC150163 Previous Articles   Next Articles

Vectors Based on Nanomaterials for Gene Delivery

Gu Xiaoxiao1,2, Du Baoji2, Li Yunhui1, Gao Ying*1, Li Dan*2, Wang Erkang*2   

  1. 1. School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 13002;
    2. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
  • Received: Revised: Online: Published:
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 31301177, 21190040).
PDF ( 2964 ) Cited
Export

EndNote

Ris

BibTeX

Gene therapy has been regarded as a potential treatment for many diseases, including inherited or acquired ones and cancers. Safe, efficient and stable expression of exogenous genes in target cells is the key issue of gene therapy, which depends on the gene delivery system remarkably. Generally, there are two types of gene carriers: viral and non-viral vectors. The transfection efficiency of viral vectors is always higher than that of nonviral ones, but the side effects of viral vectors, such as immune response and random insert of the genes into the host chromosomes, are inevitable during the gene therapy. As the new gene transfer system, non-viral vectors make up for the defects of viral ones and play an irreplaceable role in gene therapy. With the emergence and vigorous development of nanotechnology, vectors based on nanomaterials named nanocarriers have gained more and more attentions for their potential advantages in gene delivery: easily being prepared and multifunctional modified; possessing good biocompatibility and causing less immune response; easily passing through tissues and being absorbed by the target cells with higher gene delivery efficiency; effectively protecting the exogenous genes from being quickly destroyed by the enzymes in tissues or cells. In the review, we mainly focus on the investigations of nanocarriers based on metal, inorganic and non-metal, cationic polymer and liposome nanoparticles and prospect the potential development of the nanocarriers.

Contents
1 Introduction
2 Nanocarriers based on metal nanoparticles
2.1 Magnetic nanoparticles
2.2 Gold nanoparticles
3 Nanocarriers based on inorganic and non-metal nanoparticles
3.1 Carbon nanotubes
3.2 Silica nanoparticles
4 Nanocarriers based on cationic polymers
4.1 Polyethyleneimine nanoparticles
4.2 Chitosan nanoparticles
5 Nanocarriers based on liposomes
6 Conclusion

CLC Number: 

[1] Dizaj S M, Jafari S, Khosroushahi A Y. Nanoscale Res. Lett., 2014, 9: 252.
[2] Jolly D. Cancer Gene Ther., 1994, 1: 51.
[3] Rejman J, Oberle V, Zuhorn I, Hoekstra D. Biochem. J., 2004, 377:159.
[4] Davis M E, Zuckerman J E, Choi C H J, Seligson D, Tolcher A, Alabi C A, Yen Y, Heidel J D, Ribas A. Nature, 2010, 464: 1067.
[5] Xu Z P, Zeng Q H, Lu G Q, Yu A B. Chem. Eng. Technol., 2006, 61: 1027.
[6] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller R N. Chem. Rev., 2008, 108: 2064.
[7] Mah C, Zolotukhin I, Fraites T J, Dobson J, Batich C, Byrne B J. Mol. Ther., 2000, 1: S239.
[8] Xiang J J, Tang J Q, Zhu S G, Nie X M, Lu H B, Shen S R, Li X L, Tang K, Zhou M, Li G Y. J. Gene Med., 2003, 5: 803.
[9] Pan X, Guan J, Yoo J W, Epstein A J, Lee L J, Lee R J. Int. J. Phytorem., 2008, 358: 263.
[10] Zhang Z B, Song L N, Dong J L, Guo D W, Du X L, Cao B Y, Zhang Y, Gu N, Mao X L. J. Nanopart. Res., 2013, 15: 1.
[11] Shi M R, Liu Y Y, Xu M M, Yang H, Wu C H, Miyoshi H. Macromol. Biosci., 2011, 11: 1563.
[12] Rhim W K, Kim J S, Nam J M. Small, 2008, 4: 1651.
[13] Noh S M, Kim W K, Kim S J, Kim J M, Baek K H, Oh Y K. Biochim. Biophys. Acta, 2007, 1770: 747.
[14] Zhou X F, Zhang X Z, Yu X H, Zha X, Fu Q, Liu B, Wang X Y, Chen Y, Chen Y, Shan Y M, Jin Y H, Wu Y G, Liu J Q, Kong W C, Shen J. Biomaterials, 2008, 29: 111.
[15] Hu C, Peng Q, Chen F J, Zhong Z L, Zhuo R X. Bioconjugate Chem., 2010, 21:836.
[16] Ghosh P S, Kim C K, Han G, Forbes N S, Rotello V M. ACS Nano, 2008, 2: 2213.
[17] Li P C, Li D, Zhang L X, Li G P, Wang E K. Biomaterials, 2008, 29: 3617.
[18] Li D, Li P C, Li G P, Wang J, Wang E K. Biomaterials, 2009, 30: 1382.
[19] Du B J, Tian L, Gu X X, Li D, Wang E K, Wang J. Small, DOI: 10.1002/smll.201402470.
[20] Han G, You C, Kim B J, Turingan R S, Forbes N S, Martin C T, Rotello V M. Angew. Chem. Int. Ed., 2006, 45: 3165.
[21] Chen Z Z, Zhang L F, He Y L, Li Y F. ACS Appl. Mater. Inter., 2014, 6: 14196.
[22] Liu Z, Winters Mark, Holodniy Mark, Dai H J. Angew. Chem. Int. Ed., 2007, 46: 2023.
[23] Richard C, Mignet N, Largeau C, Escriou V, Bessodes M, Scherman D. Nano Res., 2009, 2: 638.
[24] Kneuer C, Sameti M, Bakowsky U, Schiestel T, Schirra H, Schmidt H, Lehr C M. Bioconjugate Chem., 2000, 11: 926.
[25] Liu J, Stace-Naughton A, Brinker C J. Chem. Commun., 2009, 14: 5100
[26] Radu D R, Lai C Y, Jeftinija K, Rowe E W, Jeftinija S, Lin Y. J. Am. Chem. Soc., 2004, 126: 13216.
[27] Zhu S G, Lu H B, Xiang J J, Tang K, Zhang B C, Zhou M, Tan C, Li G Y. Chin. Sci. Bull., 2002, 47: 654.
[28] Hartono S B, Gu W Y, Kleitz F, Liu J, He L, Middelberg A P, Yu C, Lu G Q, Qiao S Z. ACS Nano, 2012, 6: 2104.
[29] Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V, ZhaoY. Antioxid. Redox. Signal., 2014, 21: 707.
[30] Jin L, Zeng X, Liu M, Deng Y, He N Y. Theranostics, 2014, 4: 240.
[31] Dai Z, Gjetting T, Mattebjerg M A, Wu C, Andresen T L. Biomaterials, 2011, 32: 8626.
[32] Nimesh S, Goyal A, Pawar V, Jayaraman S, Kumar P, Chandra R, Singh Y, Gupta K C. J. Control. Release, 2006, 110: 457.
[33] Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta K C, Chandra R. Int. J. Pharm., 2007, 337: 265.
[34] Boussif O, Lezoualch F, Zanta M A, Mergny M D, Scherman D, Demeneix B, Behr J P. Proc. Natl. Acad. Sci. U. S. A., 1995, 92: 7297.
[35] Nguyen K C, Muthiah M, Islam M A, Kalash R S, Cho C S, Park H, Lee I K, Kim H J, Park I K, Cho K A. Colloid. Surf. B Bioin., 2014, 119:126.
[36] Chen L, Tian H Y, Chen J, Chen X S, Huang Y B, Jing X B. J. Gene Med., 2010, 12: 64.
[37] Thomas M, Lu J, Zhang C C, Chen J Z, Klibanov A M. Pharm. Res., 2007, 24: 1564.
[38] Bao X L, Wang W, Wang C, Wang Y, Zhou J P, Ding Y, Wang X Y, Jin Y T. Biomaterials, 2014, 35: 8450.
[39] Baginskiy I, Lai T C, Cheng L C, Chan Y C, Yang K Y, Liu R S, Hsiao M, Chen C H, Hu S F, Her L J, Tsai D P, Liu R S. J. Phys. Chem., 2013,117: 2396.
[40] Mumper R J, Wang J J, Claspell J M, Rolland A P. J. Control. Release, 1995, 22: 178.
[41] Danielsen S, Strand S, de Lange D C, Stokke B T. Biochim. Biophys. Acta, 2005, 1721: 44.
[42] Lavertu M, Methot S, Tran-Khanh N, Buschmann M D. Biomaterials, 2006, 27: 4815.
[43] Kiang T, Wen J, Lim H W, Leong K W. Biomaterials, 2004, 25: 5293.
[44] Ishii T, Okahata Y, Sato T. Biochim. Biophys. Acta, 2001, 1514: 51.
[45] Jiang X, Dai H, Leong K W, Goh S H, Mao H Q, Yang Y Y. J. Gene Med., 2006, 8: 477.
[46] Xie Y, Qiao H Z, Su Z G, Chen M L, Ping Q N, Sun M J. Biomaterials, 2014, 35: 7978.
[47] Zhao X, Yin L, Ding J, Tang Cui, Gua S, Yin C, Mao Y. J. Control. Release, 2010, 144: 46.
[48] Felgner P L, Gadek T R, Holm M, Roman R, Chan H W, Wenz M, Northrop J P, Ringold G M, Danielsen M. Proc. Natl. Acad. Sci. U. S. A., 1987, 84: 7413.
[49] Pozzi D, Marchini C, Cardarelli F, Rossetta A, Colapicchioni V, Amici A, Montani M, Motta S, Brocca P, Cantù L, Caracciolo G. Mol. Pharm., 2013, 10: 4654.
[50] Tagalakis A D, He L, Saraiva L, Gustafsson K T, Hart S L. Biomaterials, 2011, 32: 6302.
[51] Writer M J, Kyrtatos P G, Bienemann A S, Pugh J A, Lowe A S, Villegas-Llerena C, Kenny G D, White E A, Gill S S, McLeod C W, Lythgoe M F, Hart S L. J. Control. Release, 2012, 162: 340.
[52] Yan J, Korolev N, Eom K D, Tam J P, Nordenskiold L. Biomacromolecules, 2012, 13: 124.
[53] Ochoa G P, Sesma J Z, Diez M A, Diaz-Tahoces A, Aviles-Trigeros M, Grijalvo S, Eritja R, Fernandez E, Pedraz J L. Pharm. Res., 2014, 31: 1665.
[54] Li P C, Zhang L X, Ai K L, Li D, Liu X H, Wang E K. J. Control. Release, 2008, 129: 128.
[55] Li D, Li G P, Li P C, Zhang L X, Liu Z J, Wang J, Wang E K. Biomaterials, 2010, 31: 1850.
[1] Qiangqiang Yang, Chuan Li, Shuxian Yu, Shuhua Fan, Yuexia Wang, Min Hong. Application of Nanocarriers in Co-Loading siRNA and Chemotherapeutic Drugs to Reverse Multidrug Resistance of Tumor [J]. Progress in Chemistry, 2021, 33(10): 1900-1916.
[2] Qixiao Guan, Heze Guo, Hongjing Dou. Nanocarriers Modified by Cell Membrane and Their Applications in Tumor Immunotherapy [J]. Progress in Chemistry, 2021, 33(10): 1823-1840.
[3] Zhirui Dong, Weijun Tong*. Shear-Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(2/3): 190-197.
[4] Gong Zhaocui, Yin Chao, Zhao Hui, Lu Xiaomei, Fan Quli, Huang Wei. Light-Controlled Nanocarriers for Drug Release [J]. Progress in Chemistry, 2016, 28(9): 1387-1396.
[5] Liu Yajie, Zhang Peng, Du Jianwei, Wang Youxiang. Regulation the Morphology of Micro-and Nanoparticles and the Effect on Drug/Gene Delivery System [J]. Progress in Chemistry, 2016, 28(1): 67-74.
[6] Ci Jiliang, Kang Hongliang, Liu Chenguang, He Aihua, Liu Ruigang. Protein Resistance Adsorption Mechanism and Applications of Zwitterionic Polymers [J]. Progress in Chemistry, 2015, 27(9): 1198-1212.
[7] Du Jianwei, Mou Yun, Wang Youxiang. Research of Ultrasound-Mediated Gene Delivery [J]. Progress in Chemistry, 2014, 26(08): 1427-1433.
[8] Ren Tianbin, Xia Wenjuan, Wu Wei, Li Yongyong*. Stimuli-Responsive and Polymeric Prodrugs [J]. Progress in Chemistry, 2013, 25(05): 775-784.
[9] Yang Chanli, Dong Xiongwei, Jiang Nan, Zhang Dan, Liu Changlin*. Introduction of Metal Complex-Nucleic Acid Interactions into Cells [J]. Progress in Chemistry, 2013, 25(04): 555-562.
[10] Dong Bo, Yan Xibo, Niu Yujie, Wang Xin, Wang Lianyong, Wang Yanming* . Functionalized Polyamidoamine Dendrimer as Gene Delivery Vectors [J]. Progress in Chemistry, 2012, 24(12): 2352-2358.
[11] Yang Qizhi, Liu Jia, Jiang Xulin. Application of Click Chemistry in Biomedical Polymers [J]. Progress in Chemistry, 2010, 22(12): 2377-2387.
[12] . Application of Ion Exchange Chromatography for Pharmaceutical Plasmid Analysis [J]. Progress in Chemistry, 2010, 22(0203): 482-488.
[13] Hua Yuan Jie Ren. The Research of Functional Polymeric Gene Vector [J]. Progress in Chemistry, 2008, 20(11): 1804-1809.
[14] Yanqing Sun1,Jian Zhang2,Gaoyong Zhang1**,Hongxia Wang1. The Interaction between DNA and Amphoteric Surfactants [J]. Progress in Chemistry, 2006, 18(11): 1440-1445.