中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 212-219 DOI: 10.7536/PC140921 Previous Articles   Next Articles

• Review •

Application of Polydopamine in Surface Modification of Biomaterials

Liu Zongguang, Qu Shuxin*, Weng Jie   

  1. Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Basic Research Program of China (973 Program)(No.2012CB933602), the National Natural Science Foundation of China (No.51372210) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20130184110023).

PDF ( 11055 ) Cited
Export

EndNote

Ris

BibTeX

Inspired by the strong adhesive proteins secreted by mussels for attachment onto a wide range of substrates in wet condition, some reports indicated that polydopamine (PDA) possesses the similar structure and strong adhesion to those of adhesive proteins. PDA film can be formed on the surface of substrate in alkaline solution expeditiously, which results in the improvement of the hydrophily and the chemical versatility of substrate due to the hydrophilic hydroxyl and amino groups of PDA. The PDA layer can be used as an intermediate to anchor functional molecules on the surface through chemical bonds (by Michael addition or Schiff base reaction) or other physical bonds (hydrogen bond or van der Waals' force). PDA surface modification strategy is extremely useful because the process is simple and solvent-free. Moreover, due to the improvement of cell adhesion and biocompatibility, PDA has been widely used in surface modification of biomaterials. In this review, adhesive mechanism and application of PDA in surface modification of biomaterials have been summarized. In addition, the problems existed and the promising prospects of the application of PDA in biomaterials are pointed out.This review also provides useful information for the potential application of PDA in biomaterials and tissue engineering.

Contents
1 Introduction
2 Formation process and mechanism of PDA
3 Application of PDA
3.1 Increasing the hydrophilicity of biomaterials with PDA
3.2 Immobilizing drugs or growth factors with PDA
3.3 Immobilizing silver nanoparticles with PDA
3.4 Immobilizing proteins with PDA
3.5 Increasing the biocompatibility of substrates with PDA
3.6 Inducing mineralization on the surface of substrates with PDA
3.7 Application of PDA in other aspects
4 Conclusion and outlook

CLC Number: 

[1] Podsiadlo P, Liu Z Q, Paterson D, Messersmith P B, Kotov N A. Adv. Mater., 2007, 19: 949.
[2] Hwang D S, Zeng H B, Masic A, Harrington M J, Israelachvili J N, Waite J H. J. Biol. Chem., 2010, 285: 25850.
[3] 徐又一(Xu Y Y), 蒋金泓(Jiang J H), 朱利平(Zhu L P), 朱宝库(Zhu B K). 膜科学与技术(Membrane Science and Technology), 2011, 31(3): 32.
[4] Yu M E, Hwang J Y, Deming T J. J. Am. Chem. Soc., 1999, 121: 5825.
[5] 孙培育(Sun P Y), 田立颖(Tian L Y), 郑震(Zheng Z), 王新灵(Wang X L). 高分子学报(Acta Polymerica Sinica), 2009, 1(8): 803.
[6] Hong S, Kim K Y, Wook H J, Park S Y, Lee K D, Lee D Y, Lee H. Nanomedicine, 2011, 6: 793.
[7] Waite J H. Nat. Mater., 2008, 7: 8.
[8] Lee H, Dellatore S M, Miller W M, Messersmith P B. Science, 2007, 318: 426.
[9] Faure E, Falentin-Daudre C, Jerome C, Lyskawa J, Fournier D, Woisel P, Detrembleur C. Prog. Polym. Sci., 2013, 38: 236.
[10] Ball V, Frari D D, Michel M, Buehler M J, Toniazzo V, Singh M K, Gracio J, Ruch D. Bionanosci., 2012, 2: 16.
[11] Lynge M E, van der Westen R, Postma A, Städler B. Nanoscale, 2011, 3: 4916.
[12] Liu Y, Ai K, Lu L. Chem. Rev., 2014, 114: 5057.
[13] Faure E, Falentin-Daudré C, Jérôme C, Lyskawa J, Fournier D, Woisel P, Detrembleur C. Prog. Polym. Sci., 2013, 38: 236.
[14] Sedó J, Saiz-Poseu J, Busqué F, Ruiz-Molina D. Adv. Mater., 2013, 25: 653.
[15] 刘娟(Liu J), 杨青林(Yang Q L), 徐晶晶(Xu J J), 刘克松(Liu K S), 郭林(Guo L), 江雷(Jiang L). 化学进展(Progress in Chemistry), 2012, 24(10): 1946.
[16] 陈铭忆(Chen M Y), 温变英(Wen B Y), 张扬(Zhang Y).中国塑料(China Plastics), 2013, 27(6): 7.
[17] 王彩萍(Wang C P), 蔺存国(Lin C G), 张金伟(Zhang J W), 陈守刚(Chen S G).材料开发与应用(Development and Application of Materials), 2014, 8: 101.
[18] Ye Q, Zhou F, Liu W M. Chem. Soc. Rev., 2011, 40: 4244.
[19] 陈丽娟(Chen L J), 曾容菊(Zeng R J), 王延梅(Wang Y M). 高分子通报(Polymer Bulletin), 2012, (1): 15.
[20] 吴俊杰(Wu J J), 龙宇华(Long Y H), 赵宁(Zhao N), 徐坚(Xu J). 高分子通报(Polymer Bulletin), 2011, (10): 86.
[21] Brubaker C E, Messersmith P B. Langmuir, 2012, 28: 2200.
[22] Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W. Chem. Sci., 2013, 4: 3796.
[23] Herlinger E, Jameson R F, Linert W. J. Chem. Soc. Perkin Trans.2, 1995, (2): 259.
[24] Dreyer D R, Miller D J, Freeman B D, Paul D R, Bielawski C W. Langmuir, 2012, 28: 6428.
[25] Liu L F, Shao B, Yang F L. Sep. Purif. Technol., 2013, 118: 226.
[26] Hong S, Na Y S, Choi S, Song I T, Kim W Y, Lee H. Adv. Funct. Mater., 2012, 22: 4711.
[27] Tsai W B, Chen W T, Chien H W, Kuo W H, Wang M J. Acta Biomater., 2011, 7: 4187.
[28] Ku S H, Ryu J, Hong S K, Lee H, Park C B. Biomaterials, 2010, 31: 2535.
[29] Ku S H, Park C B. Biomaterials, 2010, 31: 9431.
[30] Xi Z Y, Xu Y Y, Zhu L P, Wang Y, Zhu B K. J. Membr. Sci., 2009, 327: 244.
[31] Burzio L A, Waite J H. Biochemistry, 2000, 39: 11147.
[32] LaVoie M J, Ostaszewski B L, Weihofen A, Schlossmacher M G, Selkoe D J. Nat. Med., 2005, 11: 1214.
[33] Zhu L P, Yu J Z, Xu Y Y, Xi Z Y, Zhu B K. Colloids Surf. B, 2009, 69: 152.
[34] 谢槟(Xie B), 李贵才(Li G C), 代璐(Dai L), 杨苹(Yang P), 黄楠(Huang N). 高等学校化学学报(Chemical Journal of Chinese University), 2012, 33(1): 90.
[35] Lee H, Rho J, Messersmith P B. Adv. Mater., 2009, 21: 431.
[36] Poh C K, Shi Z L, Lim T Y, Neoh K G, Wang W. Biomaterials, 2010, 31: 1578.
[37] Kang J, Sakuragi M, Shibata A, Abe H, Kitajima T, Tada S, Mizutani M, Ohmori H, Ayame H, Son T I, Aigaki T, Ito Y. Mat. Sci. Eng. C, 2012, 32: 2552.
[38] Yang K, Lee J S, Kim J, Lee Y B, Shin H, Um S H, Kim J B, Park K I, Lee H, Cho S W. Biomaterials, 2012, 33: 6952.
[39] Saidin S, Chevallier P, Kadir M R A, Hermawan H, Mantovani D. Mater. Sci. Eng. C, 2013, 33: 4715.
[40] Son H Y, Ryu J H, Lee H, Nam Y S. Macromol. Mater. Eng., 2013, 298: 547.
[41] Sileika T S, Kim H D, Maniak P, Messersmith P B. ACS Appl. Mater. Interfaces, 2011, 3: 4602.
[42] Sureshkumar M, Siswanto D Y, Chen Y C, Lee C K, Wang M J. J. Polym. Sci. Pol. Phys., 2013, 51: 303.
[43] Sureshkumar M, Siswanto D Y, Lee C K. J. Mater. Chem., 2010, 20: 6948.
[44] Liao Y A, Wang Y Q, Feng X X, Wang W C, Xu F J, Zhang L Q. Mater. Chem. Phys., 2010, 121: 534.
[45] Chien C Y, Liu T Y, Kuo W H, Wang M J, Tsai W B. J. Biomed. Mater. Res. A, 2013, 101: 740.
[46] Yang S H, Kang S M, Lee K B, Chung T D, Lee H, Choi I S. J. Am. Chem. Soc., 2011, 133: 2795.
[47] Wei Q, Li B J, Yi N, Su B H, Yin Z H, Zhang F L, Li J, Zhao C S. J. Biomed. Mater. Res. A, 2011, 96: 38.
[48] Xie J W, Michael P L, Zhong S P, Ma B, MacEwan M R, Lim C T. J. Biomed. Mater. Res. A, 2012, 100: 929.
[49] Ren Y H, Rivera J G, He L H, Kulkarni H, Lee D K, Messersmith P B. BMC Biotech., 2011, 11: 63.
[50] Lee J S, Lee K, Moon S H, Chung H M, Lee J H, Um S H, Kim D I, Cho S W. Macromol. Biosci., 2014, 14: 1181.
[51] Yu X H, Walsh J, Wei M. RSC Adv., 2014, 4: 7185.
[52] Cho H, Perikamana S K M, Lee J, Lee J, Lee K M, Shin C S, Shin H. ACS Appl. Mater. Interfaces, 2014, 6: 11225.
[53] Rim N G, Kim S J, Shin Y M, Jun I, Lim D W, Park J H, Shin H. Colloids. Surf. B, 2012, 91: 189.
[54] Wu C T, Fan W, Chang J, Xiao Y. J. Mater. Chem., 2011, 21: 18300.
[55] Sun K, Xie Y Y, Ye D K, Zhao Y Y, Cui Y, Long F, Zhang W, Jiang X Y. Langmuir, 2012, 28: 2131.
[56] Shin Y M, Lee Y B, Shin H. Colloids. Surf. B, 2011, 87: 79.
[57] Jeong K J, Wang L Q, Stefanescu C F, Lawlor M W, Polat J, Dohlman C H, Langer R S, Kohane D S. Soft Matter, 2011, 7: 8305.
[58] Yang Z L, Tu Q F, Zhu Y, Luo R F, Li X, Xie Y C, Maitz M F, Wang J, Huang N. Adv. Healthc. Mater., 2012, 1: 548.
[59] Zhong S, Luo R F, Wang X, Tang L L, Wu J, Wang J, Huang R B, Sun H, Huang N. Colloids. Surf. B, 2014, 116: 553.
[60] Kim S, Park C B. Biomaterials, 2010, 31: 6628.
[61] Ryu J, Ku S H, Lee H, Park C B. Adv. Funct. Mater., 2010, 20: 2132.
[62] Lee M, Ku S H, Ryu J, Park C B. J. Mater. Chem., 2010, 20: 8848.
[63] Zhou Y Z, Cao Y, Liu W, Chu C H, Li Q L. ACS Appl. Mater. Interfaces, 2012, 4(12): 6901.
[64] Liu Z G, Qu S X, Zheng X T, Xiong X, Fu R, Tang K Y, Zhong Z D, Weng J. Mater. Sci. Eng. C, 2014, 44: 44.
[65] Wu C T, Fan W, Chang J, Xiao Y. J. Mater. Chem., 2011, 21: 18300.
[66] Feng J J, Zhang P P, Wang A J, Liao Q C, Xi J L, Chen J R. New. J. Chem., 2012, 36: 148.
[67] Ou J F, Wang J Q, Zhang D, Zhang P L, Liu S, Yan P H, Liu B, Yang S R. Colloids. Surf. B, 2010, 76: 123.

[1] Ruyue Cao, Jingjing Xiao, Yixuan Wang, Xiangyu Li, Anchao Feng, Liqun Zang. Cascade RAFT Polymerization of Hetero Diels-Alder Cycloaddition Reaction [J]. Progress in Chemistry, 2023, 35(5): 721-734.
[2] Xuexian Wu, Yan Zhang, Chunyi Ye, Zhibin Zhang, Jingli Luo, Xianzhu Fu. Surface Pretreatment of Polymer Electroless Plating for Electronic Applications [J]. Progress in Chemistry, 2023, 35(2): 233-246.
[3] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[4] Xuanshu Zhong, Zongjian Liu, Xue Geng, Lin Ye, Zengguo Feng, Jianing Xi. Regulating Cell Adhesion by Material Surface Properties [J]. Progress in Chemistry, 2022, 34(5): 1153-1165.
[5] Xiaolian Niu, Kejun Liu, Ziming Liao, Huilun Xu, Weiyi Chen, Di Huang. Electrospinning Nanofibers Based on Bone Tissue Engineering [J]. Progress in Chemistry, 2022, 34(2): 342-355.
[6] Rui Zhao, Xiao Yang, Xiangdong Zhu, Xingdong Zhang. Application of Trace Element Strontium-Doped Biomaterials in the Field of Bone Regeneration [J]. Progress in Chemistry, 2021, 33(4): 533-542.
[7] Shiying Yang, Junqin Liu, Qianfeng Li, Yang Li. Modification Mechanism of Zero-Valent Aluminum by Mechanical Ball Milling [J]. Progress in Chemistry, 2021, 33(10): 1741-1755.
[8] Miao Qin, Mengjie Xu, Di Huang, Yan Wei, Yanfeng Meng, Weiyi Chen. Iron Oxide Nanoparticles in the Application of Magnetic Resonance Imaging [J]. Progress in Chemistry, 2020, 32(9): 1264-1273.
[9] Hao Sun, Chengwei Song, Yuepeng Pang, Shiyou Zheng. Functional Design of Separator for Li-S Batteries [J]. Progress in Chemistry, 2020, 32(9): 1402-1411.
[10] Ruixuan Qin, Guocheng Deng, Nanfeng Zheng. Assembling Effects of Surface Ligands on Metal Nanomaterials [J]. Progress in Chemistry, 2020, 32(8): 1140-1157.
[11] Zhiyuan Lu, Yanni Liu, Shijun Liao. Enhancing the Stability of Lithium-Rich Manganese-Based Layered Cathode Materials for Li-Ion Batteries Application [J]. Progress in Chemistry, 2020, 32(10): 1504-1514.
[12] Huiya Wang, Limin Zhao, Fang Zhang, Dannong He. High-Performance Lithium-Ion Secondary Battery Membranes [J]. Progress in Chemistry, 2019, 31(9): 1251-1262.
[13] Xingang Zuo, Haolan Zhang, Tong Zhou, Changyou Gao. Biomaterials for Regulating Cell Migration and Tissue Regeneration [J]. Progress in Chemistry, 2019, 31(11): 1576-1590.
[14] Zhaoxiang Wang, Jun Ma, Yurui Gao, Shuai Liu, Xin Feng, Liquan Chen. Stabilizing Structure and Performances of Lithium Rich Layer-Structured Oxide Cathode Materials [J]. Progress in Chemistry, 2019, 31(11): 1591-1614.
[15] Ping Liu, Jing Wang, Hongye Hao, Yunfan Xue, Junjie Huang, Jian Ji. Photochemical Surface Modification of Biomedical Materials [J]. Progress in Chemistry, 2019, 31(10): 1425-1439.