中文
Announcement
More
Progress in Chemistry 2015, Vol. 27 Issue (2/3): 242-250 DOI: 10.7536/PC140803 Previous Articles   Next Articles

• Review •

Aquaphotomics of Near Infrared Spectroscopy

Fan Mengli, Zhao Yue, Liu Yan, Cai Wensheng, Shao Xueguang*   

  1. College of Chemistry, Nankai University, Tianjin 300071, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21175074).

PDF ( 4292 ) Cited
Export

EndNote

Ris

BibTeX

Water is one of the main components in life system. Taking water molecules in life system as an object, aquaphotomics studies the structural changes of water with perturbations on the system by using spectroscopic techniques. Therefore, aquaphotomics understands the interaction of water with other molecules or the function of water in life systems on molecular level. Aquaphotomics of near infrared spectroscopy focuses on studying the effect of perturbations on the near infrared spectrum of water by multivariate analysis methods. Perturbations generally include the variation of concentrations, temperature, pressure, etc., and can be achieved by adding extra components to a solution or even illumination. Diseases or damages of a life system can also be known as a perturbation. Multivariate analysis methods are used to analyze the spectra acquired under the defined perturbation for extracting the water absorbance patterns (WAPs) in the spectra. Then the WAPs, i.e., the perturbation-induced variation in the spectra can be used to investigate the biological systems. As a result, a non-invasive monitoring of life systems can be achieved by using the technique. The concept, research contents, methods and applications of aquaphotomics of near infrared spectroscopy are summarized in this paper.

Contents
1 Introduction
2 Aquaphotomics
2.1 Concept
2.2 Aquaphotome
2.3 Water absorbance parrerns
2.4 Extended water mirror approach
3 Methods
3.1 PCA
3.2 PLS
3.3 EFA
3.4 MCR-ALS
3.5 2DCOS
4 Applications
4.1 Material structure
4.2 Quantitative determination
4.3 Disease diagnosis
5 Conclusion

CLC Number: 

[1] Gowen A A, Amigo J M, Tsenkova R. Anal. Chim. Acta, 2013, 759: 8.
[2] Huse N, Wen H, Nordlund D, Szilagyi E, Daranciang D, Miller T A, Nilsson A, Schoenlein R W, Lindenberg A. Phys. Chem. Phys., 2009, 11: 3951.
[3] Robertson W H, Diken E G, Price E A, Shin J W, Johnson M A. Science, 2003, 299: 1367.
[4] Tsenkova R. J. Near Infrared Spectrosc., 2009, 17: 303.
[5] Chaplin M. Water Structure and Science. http://www1.lsbu.ac.uk/water/vibrat.html#d.
[6] 陆婉珍(Lu W Z). 现代近红外光谱分析技术(第二版)(Modern Near Infrared Spectroscopy Analytical Technology)(Second Edition). 北京:中国石化出版社(Beijing: China's Petrochemical Press), 2006. 39.
[7] Tsenkova R. Spectrosc. Eur., 2010, 22: 6.
[8] Collins J R. Phys. Rev., 1925, 26: 771.
[9] Waggener W C. Anal. Chem., 1958, 30: 1569.
[10] Inoue A, Kojima K, Taniguchi Y, Suzuki K. J. Solution Chem., 1984, 13: 811.
[11] Wu Y Q, Czarnik-Matusewicz B, Murayama K C, Ozaki Y. J. Phys. Chem. B, 2000, 104: 5840.
[12] Czarnecki M A, Haufa K Z. J. Phys. Chem. A, 2005, 109: 1015.
[13] Tsenkova R. NIR news, 2008, 19(1): 7.
[14] Tsenkova R. NIR news, 2006, 17: 10.
[15] Kinoshita K, Miyazaki M, Morita H, Vassileva M, Tang C X, Li D S, Ishikawa O, Kusunoki H, Tsenkova R. Sci. Rep., 2012, 2: 1.
[16] Tsenkova R. NIR news, 2007, 18(2): 15.
[17] Tsenkova R. NIR news, 2006, 18: 14.
[18] Tsenkova R. NIR news, 2007, 18(6): 14.
[19] Wulfert F, Kok W T, Smilde A K. Anal. Chem., 1998, 70: 1761.
[20] Segtnan V H, Sasic S, Isaksson T, Ozaki Y. Anal. Chem., 2001, 73: 3153.
[21] 江勇(Jiang Y), 倪永年(Ni Y N), 朱惠芳(Zhu H F). 南昌大学学报(理科版)(Journal of Nanchang University(Natural Science)), 2012, 36(4): 376.
[22] Davidian A G, Kudrev A G, Myund L A, Khripun M K. J. Near Infrared Spectrosc., 2014, 22: 27.
[23] 张方(Zhang F). 西北大学博士论文(Doctoral Dissertation of Northwest University), 2006.
[24] Williams P. J. Near Infrared Spectrosc., 2009, 17: 315.
[25] 朱向荣(Zhu X R), 李娜(Li N), 史新元(Shi X Y), 乔延江(Qiao Y J), 张卓勇(Zhang Z Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29: 906.
[26] Shao X G, Kang J, Cai W S. Talanta, 2010, 82: 1017.
[27] Kang J, Cai W S, Shao X G. Talanta, 2011, 85: 420.
[28] Gampp H, Maeder M. Meyer C J, Zuberbuhler A D. Talanta, 1985, 32: 1133.
[29] Maeder M. Anal. Chem., 1987, 59: 527.
[30] Yuan B, Murayama K, Wu Y, Tsenkova R, Dou X, Era S, Ozaki Y. Appl. Spectrosc., 2003, 57:1223.
[31] Chen Y J, Ozaki Y, Czarnecki M A. Phys. Chem. Chem. Phys., 2013, 15: 18694.
[32] Malinowski E R. J. Chemom., 1988, 3: 49.
[33] Jaumot J, Gargallo R, Juan A, Tauler R. Chemom. Intell. Lab. Syst., 2005, 76: 101.
[34] Noda I. Appl. Spectrosc., 1993, 47: 1329.
[35] Boguslawa C M, Murayama K C, Wu Y Q, Ozaki Y. J. Phys. Chem. B, 2000, 104: 7803.
[36] Murayama K, Ozaki Y. Biopolymers, 2002, 67: 394.
[37] 刘蓉(Liu R), 苗静(Miao J), 杨仁杰(Yang R J). 理化检验-化学分册(Physical and Chemical Inspection-Chemical Booklet), 2013, 49(4), 386.
[38] 康俊(Kang J). 南开大学硕士论文(Master Dissertation of Nankai University), 2011.
[39] Navea S, Juan A D, Tauler R. Anal. Chem., 2003, 75: 5592.
[40] Arimoto H, Tarumi M, Yamada Y. Opt. Rev., 2003, 10: 74.
[41] 方娟娟(Fan J J), 卫雪梅(Wei X M), 强建华(Qiang J H), 黄子夏(Huang Z X), 杜一平(Du Y P). 计算机与应用化学(Computers and Applied Chemistry), 2010, 27(3): 351.
[42] Kakuta N, Arimoto H, Momoki H, Li F G, Yamada Y. Appl. Opt., 2008, 47: 2227.
[43] Chung S H, Cerussi A E, Merritt S I, Ruth J, Tromberg B J. Phys. Med. Biol., 2010, 55: 3753.
[44] Shan R F, Zhao Y, Fan M L, Liu X W, Cai W S, Shao X G. Talanta, 2015, 131: 170.
[45] Tsenkova R, Atanassova S, Kowano S, Toyoda K. J. Animal Sci., 2001, 79: 2550.
[46] Tsenkova R, Atanassova S, Near Infrared Spectroscopy (Eds. Davies A M C, Cho R K). Chichester: NIR Publications, 2002. 123.
[47] Tsenkova R, Iordanova I, Toyoda K, Brown D. Biochem. Biophys. Res. Commun., 2004, 325: 1005.
[48] Jinendra B, Tamaki K, Kuroki S, Vassileva M, Yoshida S, Tsenkova R. Biochem. Biophys. Res. Commun., 2010, 397: 685.

[1] Bingguo Zhao, Yadi Liu, Haoran Hu, Yangjun Zhang, Zezhi Zeng. Electrophoretic Deposition in the Preparation of Electrolyte Thin Films for Solid Oxide Fuel Cells [J]. Progress in Chemistry, 2023, 35(5): 794-806.
[2] Zhixuan Wang, Shaokui Zheng. Selective Ionic Removal Strategy and Adsorbent Preparation [J]. Progress in Chemistry, 2023, 35(5): 780-793.
[3] Lan Mingyan, Zhang Xiuwu, Chu Hongyu, Wang Chongchen. MIL-101(Fe) and Its Composites for Catalytic Removal of Pollutants: Synthesis Strategies, Performances and Mechanisms [J]. Progress in Chemistry, 2023, 35(3): 458-474.
[4] Niu Wenhui, Zhang Da, Zhao Zhengang, Yang Bin, Liang Feng. Development of Na-Based Seawater Batteries: “Key Components and Challenges” [J]. Progress in Chemistry, 2023, 35(3): 407-420.
[5] Zixuan Liao, Yuhui Wang, Jianping Zheng. Research Advance of Carbon-Dots Based Hydrophilic Room Temperature Phosphorescent Composites [J]. Progress in Chemistry, 2023, 35(2): 263-373.
[6] Shiying Yang, Qianfeng Li, Sui Wu, Weiyin Zhang. Mechanisms and Applications of Zero-Valent Aluminum Modified by Iron-Based Materials [J]. Progress in Chemistry, 2022, 34(9): 2081-2093.
[7] Shuhui Li, Qianqian Li, Zhen Li. From Single Molecule to Molecular Aggregation Science [J]. Progress in Chemistry, 2022, 34(7): 1554-1575.
[8] Deshan Zhang, Chenho Tung, Lizhu Wu. Artificial Photosynthesis [J]. Progress in Chemistry, 2022, 34(7): 1590-1599.
[9] Lusha Gao, Jingwen Li, Hui Zong, Qianyu Liu, Fansheng Hu, Jiesheng Chen. Condensed Matter and Chemical Reactions in Hydrothermal Systems [J]. Progress in Chemistry, 2022, 34(7): 1492-1508.
[10] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[11] Tianyu Zhou, Yanbo Wang, Yilin Zhao, Hongji Li, Chunbo Liu, Guangbo Che. The Application of Aqueous Recognition Molecularly Imprinted Polymers in Sample Pretreatment [J]. Progress in Chemistry, 2022, 34(5): 1124-1135.
[12] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[13] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[14] Qiong Wang, Kang Xiao. Indoor Formaldehyde Concentrations and the Influencing Factors in Urban China [J]. Progress in Chemistry, 2022, 34(3): 743-772.
[15] Jinfeng Wang, Aisen Li, Zhen Li. The Progress of Room Temperature Phosphorescent Gel [J]. Progress in Chemistry, 2022, 34(3): 487-498.