中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1849-1858 DOI: 10.7536/PC140707 Previous Articles   Next Articles

• Review •

Zwitterions in Surface Engineering of Biomedical Nanoparticles

Chen Yangjun, Liu Xiangsheng, Wang Haibo, Wang Yin, Jin Qiao*, Ji Jian*   

  1. Key Laboratory of Macromolecular Synthesis and Functionalization, Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51333005, 21174126, 51103126, 21374095, 51303154, 51025312)

PDF ( 2246 ) Cited
Export

EndNote

Ris

BibTeX

Surface engineering of biomedical nanoparticles is of great importance to maintain nano-stability, resist nonspecific biomolecular adsorption so as to enhance in vivo circulation time. Cell membrane mimicking zwitterions can form superhydrophilic antifouling surface which helps to maintain colloidal stability and resist immune elimination via electrostatically induced hydration. The stealthy surface prolongs the blood circulation time to reach "passive targeting", further "active targeting" is also available if combined with stimuli-responsive or bioactive molecules. Hence "zwitteration" has been developed as a new surface engineering strategy of biomedical nanoparticles. This review mainly talks about surface engineering of inorganic nanoparticles with small molecular and polymeric zwitterions, zwitterionic polymeric assemblies as drug delivery system and zwitterionic polymeric prodrugs. Introduction of special properities and applications of mixed-charge materials is also involved.

Contents
1 Introduction
2 Surface design of inorganic nanoparticles with zwitterions
2.1 Small molecular zwitterions
2.2 Polymeric zwitterions
3 Zwitterionic polymeric assemblies for drug delivery
3.1 Drug non-covalently loaded assemblies
3.2 Polymeric prodrugs
4 Mixed-charged materials
5 Conclusion and outlook

CLC Number: 

[1] Caruso F, Hyeon T, Rotello V M. Chem. Soc. Rev., 2012, 41: 2537.
[2] Liu Y Y, Miyoshi H, Nakamura M. Int. J. Cancer, 2007, 120: 2527.
[3] Sanhai W R, Sakamoto J H, Canady R, Ferrari M. Nat. Nanotech., 2008, 3: 242.
[4] Fang C, Bhattarai N, Sun C, Zhang M Q. Small, 2009, 5: 1637.
[5] Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. J. Control. Release, 2000, 65: 271.
[6] Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. J. Control. Release, 2013, 166: 182.
[7] Estephan Z G, Schlenoff P S, Schlenoff J B. Langmuir, 2011, 27: 6794.
[8] 刘红艳(Liu H Y), 周健(Zhou J). 化学进展(Progress in Chemistry), 2012, 24(11): 2187.
[9] Lewis A L. Colloids Surf., B, 2000, 18: 261.
[10] Gong Y K, Winnik F M. Nanoscale, 2012, 4: 360.
[11] Cao Z Q, Jiang S Y. Nano Today, 2012, 7: 404.
[12] Chien H W, Xu X, Ella-Menye J R, Tsai W B, Jiang S Y. Langmuir, 2012, 28: 17778.
[13] Wu J, Lin W F, Wang Z, Chen S F, Chang Y. Langmuir, 2012, 28: 7436.
[14] Zhai X Y, Wang W, Wang C D, Wang Q, Liu W G. J. Mater. Chem., 2012, 22: 23576.
[15] Holmlin R E, Chen X X, Chapman R G, Takayama S, Whitesides G M. Langmuir, 2001, 17: 2841.
[16] Bernards M T, Cheng G, Zhang Z, Chen S F, Jiang S Y. Macromolecules, 2008, 41: 4216.
[17] Chen S F, Jiang S Y. Adv. Mater., 2008, 20: 335.
[18] Jiang S Y, Cao Z Q. Adv. Mater., 2010, 22: 920.
[19] Iwasaki Y, Ishihara K. Anal. Bioanal. Chem., 2005, 381: 534.
[20] Matsuno R, Ishihara K. Nano Today, 2011, 6: 61.
[21] Garcia K P, Zarschler K, Barbaro L, Barreto J A, O'Malley W, Spiccia L, Stephan H, Graham B. Small, DOI: 10.1002/smll.201303540.
[22] Boisselier E, Astruc D. Chem. Soc. Rev., 2009, 38: 1759.
[23] Qiao R R, Yang C H, Gao M Y. J. Mater. Chem., 2009, 19: 6274.
[24] Blaszykowski C, Sheikh S, Thompson M. Chem. Soc. Rev., 2012, 41: 5599.
[25] Kim S T, Saha K, Kim C, Rotello V M. Acc. Chem. Res., 2013, 46: 681.
[26] Choi H S, Liu W, Misra P, Tanaka E, Zimmer J P, Itty Ipe B, Bawendi M G, Frangioni J V. Nat. Biotechnol., 2007, 25: 1165.
[27] Rosen J E, Gu F X. Langmuir, 2011, 27: 10507.
[28] Liu W H, Choi H S, Zimmer J P, Tanaka E, Frangioni J V, Bawendi M. J. Am. Chem. Soc., 2007, 129: 14530.
[29] Breus V V, Heyes C D, Tron K, Nienhaus G U. ACS Nano, 2009, 3: 2573.
[30] Chung Y C, Chiu Y H, Wu Y W, Tao Y T. Biomaterials, 2005, 26: 2313.
[31] Chung Y C, Chen I H, Chen C J. Biomaterials, 2008, 29: 1807.
[32] Jin Q, Xu J P, Ji J, Shen J C. Chem. Commun., 2008, 3058.
[33] Zhou W B, Shao J Y, Jin Q, Wei Q S, Tang J G, Ji J. Chem. Commun., 2010, 46: 1479.
[34] Zhou W B, Liu X S, Ji J. J. Mater. Chem., 2012, 22: 13969.
[35] Ohyanagi T, Nagahori N, Shimawaki K, Hinou H, Yamashita T, Sasaki A, Jin T, Iwanaga T, Kinjo M, Nishimura S. J. Am. Chem. Soc., 2011, 133: 12507.
[36] Liu X S, Zhu H G, Jin Q, Zhou W B, Colvin V L, Ji J. Adv. Healthcare Mater., 2013, 2: 352.
[37] Muro E, Pons T, Lequeux N, Fragola A, Sanson N, Lenkei Z, Dubertret B. J. Am. Chem. Soc., 2010, 132: 4556.
[38] Aldeek F, Muhammed M A H, Palui G, Zhan N Q, Mattoussi H. ACS Nano, 2013, 7: 2509.
[39] Zhan N Q, Palui G, Grise H, Tang H L, Alabugin I, Mattoussi H. ACS Appl. Mater. Interfaces, 2013, 5: 2861.
[40] Estephan Z G, Jaber J A, Schlenoff J B. Langmuir, 2010, 26: 16884.
[41] Estephan Z G, Hariri H H, Schlenoff J B. Langmuir, 2013, 29: 2572.
[42] Wei H, Insin N, Lee J, Han H S, Cordero J M, Liu W H, Bawendi M G. Nano Lett., 2012, 12: 22.
[43] Wei H, Bruns O T, Chen O, Bawendi M G. Integr. Biol., 2013, 5: 108.
[44] Zhou Z J, Wang L R, Chi X Q, Bao J F, Yang L J, Zhao W X, Chen Z, Wang X M, Chen X Y, Gao J H. ACS Nano, 2013,7: 3287.
[45] Kim C K, Ghosh P, Pagliuca C, Zhu Z J, Menichetti S, Rotello V M. J. Am. Chem. Soc., 2009, 131: 1360.
[46] Agasti S S, Chompoosor A, You C C, Ghosh P, Kim C K, Rotello V M. J. Am. Chem. Soc., 2009, 131: 5728.
[47] Yang W, Zhang L, Wang S L, White A D, Jiang S Y. Biomaterials, 2009, 30: 5617.
[48] Zhang L, Xue H, Gao C, Carr L, Wang J, Chu B, Jiang S. Biomaterials, 2010, 31, 6582.
[49] Yuan J J, Armes S P, Takabayashi Y, Prassides K, Leite C A P, Galembeck F, Lewis A L. Langmuir, 2006, 22: 10989.
[50] Yuan J J, Schmid A, Armes S P, Lewis A L. Langmuir, 2006, 22: 11022.
[51] Giovanelli E, Muro E, Sitbon G, Hanafi M, Pons T, Dubertret B, Lequeux N. Langmuir, 2012, 28: 15177.
[52] Chen X J, Lawrence J, Parelkar S, Emrick T. Macromolecules, 2013, 46: 119.
[53] Liu X S, Huang H Y, Liu G Y, Zhou W B, Chen Y J, Jin Q, Ji J. Nanoscale, 2013,5: 3982.
[54] Ma H, Hyun J, Stiller P, Chilkoti A. Adv. Mater., 2004, 16: 338.
[55] Huang C J, Brault N D, Li Y T, Yu Q M, Jiang S Y. Adv. Mater., 2012, 24: 1834.
[56] Jia G W, Cao Z Q, Xue H, Xu Y S, Jiang S Y. Langmuir, 2009, 25: 3196.
[57] Yang W, Liu S J, Bai T, Keefe A J, Zhang L, Ella-Menye J R, Li Y T, Jiang S Y. Nano Today, 2014, 9: 10.
[58] Zhang X A, Lin W F, Chen S F, Xu H, Gu H C. Langmuir, 2011, 27: 13669.
[59] Kataoka K, Harada A, Nagasaki Y. Adv. Drug Delivery Rev., 2001, 47: 113.
[60] Larson N, Ghandehari H. Chem. Mater., 2012, 24: 840.
[61] Du J Z, Tang Y Q, Lewis A L, Armes S P. J. Am. Chem. Soc., 2005, 127: 17982.
[62] Pearson R T, Warren N J, Lewis A L, Armes S P, Battaglia G. Macromolecules, 2013, 46: 1400.
[63] Sugihara S, Blanazs A, Armes S P, Ryan A J, Lewis A L. J. Am. Chem. Soc., 2011, 133: 15707.
[64] Massignani M, LoPresti C, Blanazs A, Madsen J, Armes S P, Lewis A L, Battaglia G. Small, 2009, 5: 2424.
[65] Ukawa M, Akita H, Masuda T, Hayashi Y, Konno T, Ishihara K, Harashima H. Biomaterials, 2010, 31: 6355.
[66] Goda T, Goto Y, Ishihara K. Biomaterials, 2010, 31: 2380.
[67] Tu S, Chen Y W, Qiu Y B, Zhu K, Luo X L. Macromol. Biosci., 2011, 11: 1416.
[68] Xu J P, Ji J, Chen W D, Shen J C. J. Control. Release, 2005, 107: 502.
[69] Liu G Y, Jin Q, Liu X S, Lv L P, Chen C J, Ji J. Soft Matter, 2011, 7: 662.
[70] Wang H B, Xu F M, Wang Y, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4: 3012.
[71] Cao Z Q, Yu Q M, Xue H, Cheng G, Jiang S Y. Angew. Chem. Int. Ed., 2010, 49: 3771.
[72] Zhang S Y, Zou J, Zhang F W, Elsabahy M, Felder S E, Zhu J H, Pochan D J, Wooley K L. J. Am. Chem. Soc., 2012, 134: 18467.
[73] Cao J, Xiu K M, Zhu K, Chen Y W, Luo X L. J. Biomed. Mater. Res., Part A, 2012, 100: 2079.
[74] Cao J, Lu A J, Li C L, Cai M T, Chen Y W, Li S, Luo X L. Colloids Surf., B, 2013, 112: 35.
[75] Zhai S Y, Ma Y H, Chen Y Y, Li D, Cao J, Liu Y J, Cai M T, Xie X X, Chen Y W, Luo X L. Polym. Chem., 2014, 5: 1285.
[76] Kratz F, Müller I A, Ryppa C, Warnecke A. ChemMedChem, 2007, 3: 20.
[77] Lee E S, Na K, Bae Y H. J. Control. Release, 2003, 91: 103.
[78] Bae Y, Fukushima S, Harada A, Kataoka K. Angew. Chem. Int. Ed., 2003, 42: 4640.
[79] Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kataoka K. Bioconjugate Chem., 2005, 16: 122.
[80] Meng F H, Zhong Z Y, Feijen J. Biomacromolecules, 2009, 10: 197.
[81] Joralemon M J, McRae S, Emrick T. Chem. Commun., 2010, 46: 1377.
[82] Chen X J, McRae S, Parelkar S, Emrick T. Bioconjugate Chem., 2009, 20: 2331.
[83] McRae Page S, Martorella M, Parelkar S, Kosif I, Emrick T. Mol. Pharm., 2013, 10: 2684.
[84] Chen X J, Parelkar S S, Henchey E, Schneider S, Emrick T. Bioconjugate Chem., 2012, 23: 1753.
[85] McRae Page S, Henchey E, Chen X J, Schneider S, Emrick T. Mol. Pharm., 2014, 11: 1715.
[86] Wang H B, Xu F M, Li D D, Liu X S, Jin Q, Ji J. Polym. Chem., 2013, 4: 2004.
[87] Wang Y, Wang H B, Chen Y J, Liu X S, Jin Q, Ji J. Chem. Commun., 2013, 49: 7123.
[88] Liu X S, Huang H Y, Jin Q, Ji J. Langmuir, 2011, 27: 5242.
[89] Liu X S, Jin Q, Ji Y, Ji J. J. Mater. Chem., 2012, 22: 1916.
[90] Bonitatibus P J, Torres A S, Kandapallil B, Lee B D, Goddard G D, Colborn R E, Marino M E. ACS Nano, 2012, 6: 6650.
[91] Yang H, Heng X P, Hu J W. RSC Adv., 2012, 2: 12648.
[92] Pillai P P, Huda S, Kowalczyk B, Grzybowski B A. J. Am. Chem. Soc., 2013, 135: 6392.
[93] Liu X S, Chen Y J, Li H, Huang N, Jin Q, Ren K F, Ji J. ACS Nano, 2013, 7: 6244.
[94] Mi L, Bernards M T, Cheng G, Yu Q, Jiang S Y. Biomaterials, 2010, 31: 2919.
[95] Xu M, Zhao Y F, Feng M. Langmuir, 2012, 28: 11310.
[96] Li J G, Wang T, Wu D L, Zhang X Q, Yan J T, Du S, Guo Y F, Wang J T, Zhang A F. Biomacromolecules, 2008, 9: 2670.
[97] Huang Y, Tang Z H, Zhang X F, Yu H Y, Sun Y H, Pang X, Chen X S. Biomacromolecules, 2013, 14: 2023.
[98] Yuan Y Y, Mao C Q, Du X J, Du J Z, Wang F, Wang J. Adv. Mater., 2012, 24: 5476.

[1] Wanping Zhang, Ningning Liu, Qianjie Zhang, Wen Jiang, Zixin Wang, Dongmei Zhang. Stimuli-Responsive Polymer Microneedle System for Transdermal Drug Delivery [J]. Progress in Chemistry, 2023, 35(5): 735-756.
[2] Hong Li, Xiaodan Shi, Jieling Li. Self-Assembled Peptide Hydrogel for Biomedical Applications [J]. Progress in Chemistry, 2022, 34(3): 568-579.
[3] Mingxin Zheng, Zhenzhi Tan, Jinying Yuan. Construction and Application of Photoresponsive Janus Particles [J]. Progress in Chemistry, 2022, 34(11): 2476-2488.
[4] Yonghang Chen, Xinfang Li, Weijiang Yu, Youxiang Wang. Stimuli-Responsive Polymeric Microneedles for Transdermal Drug Delivery [J]. Progress in Chemistry, 2021, 33(7): 1152-1158.
[5] Xiaodong Jing, Ying Sun, Bing Yu, Youqing Shen, Hao Hu, Hailin Cong. Rational Design of Tumor Microenvironment Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2021, 33(6): 926-941.
[6] Zitao Hu, Yin Ding. Application of Covalent Organic Framework-Based Nanosystems in Biomedicine [J]. Progress in Chemistry, 2021, 33(11): 1935-1946.
[7] Qing Wu, Yiyuan Tang, Miao Yu, Yueying Zhang, Xingmei Li. Stimuli-Responsive DNA Nanostructure Drug Delivery System Based on Tumor Microenvironment [J]. Progress in Chemistry, 2020, 32(7): 927-934.
[8] Yifan Xue, Wenhui Meng, Runze Wang, Junjie Ren, Weili Heng, Jianjun Zhang. Supersaturation Theory and Supersaturating Drug Delivery System(SDDS) [J]. Progress in Chemistry, 2020, 32(6): 698-712.
[9] Jidong Zhang, Achen Liu, Jiao Chen, Guanghui Yuan, Huafeng Jin. Fluorescent Organic Small Molecule Based on Biotin and Their Applications [J]. Progress in Chemistry, 2020, 32(5): 594-603.
[10] Tianxi He, Wenbin Wang, Jiu Wang, Boshui Chen, Qionglin Liang. Mesoporous Carbon Spheres: Synthesis and Applications in Drug Delivery System [J]. Progress in Chemistry, 2020, 32(2/3): 309-319.
[11] Jingshi Liang, Jiaming Zeng, Junjie Li, Jueqin She, Ruixuan Tan, Bo Liu. Cationic Antimicrobial Polymers [J]. Progress in Chemistry, 2019, 31(9): 1263-1282.
[12] Xinyi Lai, Zhiyong Wang, Yongtai Zheng, Yongming Chen. Nanoscale Metal Organic Frameworks for Drug Delivery [J]. Progress in Chemistry, 2019, 31(6): 783-790.
[13] Qiwei Ying, Jianguo Liao, Minhang Wu, Zhihao Zhai, Xinru Liu. Research on Bioactive Glass Nanospheres as Delivery [J]. Progress in Chemistry, 2019, 31(5): 773-782.
[14] Mingfang Ma, Tianxiang Luan, Pengyao Xing, Zhaolou Li, Xiaoxiao Chu, Aiyou Hao. Low Molecular Weight Organic Compound Gel Based on β-cyclodextrin [J]. Progress in Chemistry, 2019, 31(2/3): 225-235.
[15] Zi-Yue Xu, Yun-Chang Zhang, Jia-Le Lin, Hui Wang, Dan-Wei Zhang, Zhan-Ting Li. Supramolecular Self-Assembly Applied for the Design of Drug Delivery Systems [J]. Progress in Chemistry, 2019, 31(11): 1540-1549.