中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (11): 1832-1839 DOI: 10.7536/PC140723 Previous Articles   Next Articles

• Review •

Fabrication and Application of New Polymer-Based Materials by Freeze-Drying

Zhang Xiaomin, Zhang Li, He Xueying, Wu Juntao*   

  1. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, College of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51373007, 51003004), the Beijing Natural Science Foundation (No.2142019), the National Basic Research Program of China (No.2010CB934700, 2012CB933200), the Fundamental Research Funds for the Central Universities, and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry

PDF ( 3109 ) Cited
Export

EndNote

Ris

BibTeX

The freeze-drying technique is an attractive method because it is an environmental friendly and cost-effective shaping process for preparing advanced materials with interconnecting pore channels or pore gradients in bodies. Freeze-drying technology is a kind of methods to build porous structural material efficiently and controllably. In recent years many new polymer-based materials prepared by freeze-drying have exhibited broad applications as functional materials. This article reviews the progress of advanced polymer materials prepared by freeze-drying, and summerizes the applications in the field of materials engineering, environment, biomedicine and other prospects. The research prospects and directions of this rapidly developing field are also briefly addressed.

Contents
1 Introduction
2 The fabrication of polymer-based materials by direct freeze-drying
2.1 Solution freeze-drying
2.2 Emulsion freeze-drying
3 The fabrication of polymer-based materials by indirect freeze-drying
4 Applications of polymer-based materials prepared by freeze-drying
4.1 The application in tissue engineering and medicine
4.2 The application in the fields of adsorption and separation
4.3 The application in conduct electricity and gas detection
5 Conclusion

CLC Number: 

[1] Tang Z, Kotov N A, Magonov S, Ozturk B.Nat.Mater., 2003, 2: 413.
[2] Sellinger A, Weiss P M, Nguyen A, Lu Y, Assink R A, Gong W, Brinker C J. Nature, 1998, 394: 256.
[3] Martin C R. Chem. Mater., 1996, 8: 1739.
[4] Steinhart M, Wehrspohn R B, Gåsele U, Wendorff J H. Angew. Chem. Int. Ed., 2004, 43: 1334.
[5] Yuan J, Walther A, Müller A H. Phys. Status. Solidi (B)., 2010, 247: 2436.
[6] Jang J, Bae J, Park E. Adv. Funct. Mater., 2006, 16: 1400.
[7] Saleh M, Tiwari J N, Kemp K C, Yousuf M, Kim K S. Environ. Sci. Technol., 2013, 47: 5467.
[8] Ren L, Hardy C G, Tang C. J. Am. Chem. Soc., 2010, 132: 8874.
[9] Hardy C G, Tang C. J. Polym. Sci. Pol. Phys., 2013, 51: 2.
[10] Keng P Y, Kim B Y, Shim I B, Sahoo R, Veneman P E, Armstrong N R, Yoo H. ACS Nano, 2009, 3: 3143.
[11] Korth B D, Keng P, Shim I, Bowles S E, Tang C, Kowalewski T, Nebesny K W, Pyun J. J. Am. Chem. Soc., 2006, 128: 6562.
[12] Ferrer M L, Esquembre R, Ortega I, Mateo C R, del Monte F. Chem. Mater., 2006, 18: 554.
[13] Zhang H, Long J, Cooper A I. J. Am. Chem. Soc., 2005, 127: 13482.
[14] Zhang H, Cooper A I. Adv. Mater., 2007, 19: 1529.
[15] Yang F, Qu X, Cui W, Bei J, Yu F, Lu S, Wang S. Biomaterials, 2006, 27: 4923.
[16] Stokols S, Tuszynski M H. Biomaterials, 2004, 25: 5839.
[17] Deville S, Saiz E, Tomsia A P. Biomaterials, 2006, 27: 5480.
[18] Nishihara H, Mukai S R, Yamashita D, Tamon H. Chem. Mater., 2005, 17: 683.
[19] Mukai S R, Nishihara H, Shichi S, Tamon H. Chem. Mater., 2004, 16: 4987.
[20] Deville S, Saiz E, Tomsia A P. Acta Mater., 2007, 55: 1965.
[21] Yoon B H, Choi W Y, Kim H E, Kim J H, Koh Y H. Scripta. Mater., 2008, 58: 537.
[22] Gutiérrez M C, Jobbágy M, Rapún N, Ferrer M L, del Monte F. Adv. Mater., 2006, 18: 1137.
[23] Deville S, Saiz E, Nalla R K, Tomsia A P. Science, 2006, 311: 515.
[24] Shi Q, An Z, Tsung C K, Liang H, Zheng N, Hawker C J, Stucky G D. Adv. Mater., 2007, 19: 4539.
[25] Gutiérrez M C, Ferrer M L, del Monte F. Chem. Mater., 2008, 20: 634.
[26] Arndt E M, Gawryla M D, Schiraldi D A. J. Mater. Chem., 2007, 17: 3525.
[27] Gawryla M D, van den Berg O, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19: 2118.
[28] Somlai L S, Bandi S A, Schiraldi D A, Mathias L J. Aiche J., 2006, 52: 1162.
[29] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K., Chem. Rev., 2012, 112: 3959.
[30] Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37: 530.
[31] Madihally S V, Matthew H W. Biomaterials, 1999, 20: 1133.
[32] Sehaqui H, Salajková M, Zhou Q, Berglund L A. Soft.Matter., 2010, 6: 1824.
[33] Alizadeh M, Abbasi F, Khoshfetrat A B, Ghaleh H. Mat. Sci. Eng. C-Mater., 2013, 33: 3958.
[34] Liu Y, An M, Qiu H X, Wang L. Polym-Plast. Technol., 2013, 52: 1154.
[35] Zhang H, Hussain I, Brust M, Butler M F, Rannard S P, Cooper A I. Nat Mater., 2005, 4: 787.
[36] Recknor J B, Recknor J C, Sakaguchi D S, Mallapragada S K. Biomaterials., 2004, 25: 2753.
[37] Matsuzaka K, Walboomers X, De Ruijter J, Jansen J. Biomaterials, 1999, 20: 1293.
[38] Dawson R, Cooper A I, Adams D J. Prog. Polym. Sci., 2012, 37: 530.
[39] Kang H W, Tabata Y, Ikada Y. Biomaterials, 1999, 20: 1339.
[40] 李喆(Li Z), 赵莉(Zhao L), 崔磊(Cui L), 曹林谊(Cao L Y). 组织工程与重建外科(Journal of Tissue Engineering and Reconstructive Surgery), 2006, 2(2): 92.
[41] Wu X, Liu Y, Li X, Wen P, Zhang Y, Long Y, Wang X, Guo Y, Xing F, Gao J. Acta Biomaterialia, 2010, 6: 1167.
[42] Im S H, Jeong U, Xia Y. Nature Materials, 2005, 4: 671.
[43] Zhang H, Edgar D, Murray P, Rak-Raszewska A, Glennon-Alty L, Cooper A I. Adv. Funct. Mater., 2008, 18: 222.
[44] Qian L, Ahmed A, Foster A, Rannard S P, Cooper A I, Zhang H. J. Mater. Chem., 2009, 19: 5212.
[45] Deville S, Saiz E, Tomsia A P. Acta. Mater., 2007, 55: 1965.
[46] Halloran J. Science, 2006, 311: 479.
[47] Munch E, Launey M E, Alsem D H, Saiz E, Tomsia A P, Ritchie R O. Science, 2008, 322: 1516.
[48] Launey M, Munch E, Alsem D, Barth H, Saiz E, Tomsia A, Ritchie R. Acta. Mater., 2009, 57: 2919.
[49] Launey M, Munch E, Alsem D, Barth H, Saiz E, Tomsia A, Ritchie R. Journal of the Royal Society Interface, 2010, 7: 741.
[50] Bandi S, Bell M, Schiraldi D A. Macromolecules, 2005, 38: 9216.
[51] Yaszemski M J, Payne R G, Hayes W C, Langer R, Mikos A G. Biomaterials, 1996, 17: 175.
[52] Jagur-Grodzinski J. Polym. Advan. Technol., 2006, 7: 395.
[53] Vacanti C, Vacanti J. Otolaryng. Clin. N. Am., 1994, 27: 263.
[54] 吴林波(Wu L B), 丁建东(Ding J D). 功能高分子学报(Journal of Functional Polymers), 2003,16(1): 91.
[55] 姚响(Yao X), 王晓工(Wang X G). 化学进展(Progress in Chemistry), 2009, 21(7): 1547.
[56] 李沁华(Li Q H), 王迪(Wang D). 中国组织工程研究(Chinese Journal of Tissue Engineering Research), 2012, 16(29): 5441.
[57] Gutiérrez M C, García-Carvajal Z Y, Jobbágy M, Rubio F, Yuste L, Rojo F, Ferrer M L, del Monte F. Adv. Funct. Mater., 2007, 17: 3505.
[58] Choi Y S, Hong S R, Lee Y M, Song K W, Park M H, Nam Y S. Biomaterials, 1999, 20: 409.
[59] Choi Y S, Hong S R, Lee Y M, Song K W, Park M H, Nam Y S. J. Biomed. Mater. Res., 1999, 48: 631.
[60] Choi Y S, Lee S, Hong S R, Lee Y, Song K, Park M. J. Mater. Sci Mater. M., 2001, 12: 67.
[61] Stokols S, Tuszynski M H. Biomaterials, 2004, 25: 5839.
[62] Hu X, Shen H, Yang F, Bei J, Wang S. Biomaterials, 2008, 29: 3128.
[63] Yin W, Yates M. Langmuir, 2008, 24(3): 701.
[64] Grant N C, Cooper A I, Zhang H. ACS Appl. Mater. Inter., 2010, 2: 1400.
[65] 陈洁(Chen J), 彭呈(Peng C), 聂俊(Nie J), 马贵平(Ma G P). 高分子通报(Polymer Bulletin), 2013, (4): 165.
[66] Zhang N, Qiu H, Si Y, Wang W, Gao J. Carbon, 2011, 49: 827.
[67] Alhwaige A A, Agag T, Ishida H, Qutubuddin S. RSC Adv., 2013, 3: 16011.
[68] Korhonen J T, Kettunen M, Ras R H, Ikkala O. ACS Appl. Mater. Inter., 2011, 3: 1813.
[69] Cervin N T, Aulin C, Larsson P T, Wgberg L. Cellulose, 2012, 19: 401.
[70] Li R, Chen C, Li J, Xu L, Xiao G, Yan D. J. Mater. Chem. A., 2014, 2: 3057.
[71] Bi H, Xie X, Yin K, Zhou Y, Wan S, He L, Xu F, Banhart F, Sun L, Ruoff R S. Adv. Funct. Mater., 2012, 22: 4421.
[72] Li H, Liu L, Yang F. J. Mater. Chem A., 2013, 1: 3446.
[73] Yang S J, Kang J H, Jung H, Kim T, Park C R. J. Mater. Chem. A, 2013, 1: 9427.
[74] Venkateswara Rao A, Hegde N D, Hirashima H. J. Colloid.Iinterf. Sci., 2007, 305: 124.
[75] Gurav J L, Rao A V, Nadargi D, Park H H. J. Mater. Sci., 2010, 45: 503.
[76] Colard C A L, Cave R A, Grossiord N, Covington J A, Bon S A F. Adv. Mater., 2009, 21: 2894.
[77] Barrow M, Zhang H F. J. Mater. Chem., 2012, 22: 11615.
[78] 何洪(He H), 张丁非(Zhang D F), 许向斌(Xu X B), 陈宏(Chen H). 功能材料(Journal of Functional Materials), 2012, 43(1): 130.
[79] 石高全(Shi G Q), 白华(Bai H). 中国材料研讨会(Conference of Chinese Materials Research Society), 2011. 5.
[80] Lee W E, Oh C J, Kang I K, Kwak G. Macromol. Chem. Phys., 2010, 211: 1900.
[81] Lee D, Zhang C, Gao H. Macromol. Chem. Phys., 2014, 215: 669.

[1] Yun Lu, Jingpeng Li, Yan Zhang, Guorui Zhong, Bo Liu, Huiqing Wang. Wood-Derived Carbon Functional Materials [J]. Progress in Chemistry, 2020, 32(7): 906-916.
[2] Zixuan Wang, Yuefei Wang, Wei Qi, Rongxin Su, Zhimin He. Design, Self-Assembly and Application of DNA-Peptide Hybrid Molecules [J]. Progress in Chemistry, 2020, 32(6): 687-697.
[3] Lei Bai, Yanfeng Wang, Shuhui Huo, Xiaoquan Lu. Application of Food and Water Samples Pretreatment Using Functional Metal-Organic Frameworks Materials [J]. Progress in Chemistry, 2019, 31(1): 191-200.
[4] Xia Mengchan, Yang Yingwei. Organic Functional Materials Based on Pillarenes [J]. Progress in Chemistry, 2015, 27(6): 655-665.
[5] Li Ang, Zhang Chunling, Sun Guoen, Mu Jianxin. Synthesis and Application of POMSS [J]. Progress in Chemistry, 2012, 24(07): 1309-1323.
[6] Ma Guilin, Xu Jia, Zhang Ming, Wang Xiaowen, Yin Jinling, Xu Jianhong. The Developments of Inorganic Proton Conductors [J]. Progress in Chemistry, 2011, 23(0203): 441-448.
[7] Mi Baoxiu, Wang Haishan, Gao Zhiqiang, Wang Xupeng, Chen Runfeng, Huang Wei. Development of Devices and Materials for Small Molecular Organic Light-emitting Diodes and Hurdles for Applications [J]. Progress in Chemistry, 2011, 23(01): 136-152.
[8] Liu Zheng, Sun Lining, Shi Liyi, Zhang Dengsong. Near-Infrared Lanthanide Luminescence for Functional Materials [J]. Progress in Chemistry, 2011, 23(01): 153-164.
[9] . Molecularly Imprinted Functional Materials Based on Polysaccharides [J]. Progress in Chemistry, 2010, 22(11): 2165-2172.
[10] Zhu Dunru Qi Li Cheng Huimin Shen Xuan Lu Wei. Fe(II) Spin Crossover Molecule-Based Materials [J]. Progress in Chemistry, 2009, 21(6): 1187-1198.
[11] Zeng Renquan Fu Xiangkai. Ion-Exchange Properties of Zirconium Phosphate and Its Derivatives [J]. Progress in Chemistry, 2009, 21(12): 2536-2541.
[12] Wu Liguang1,3* Zhou Yong2,3 Zhang Lin2 Chen Huanlin2 Gao Congjie2,3. Advance in Functional Materials of Reverse Osmosis Composite Membranes [J]. Progress in Chemistry, 2008, 20(0708): 1216-1221.
[13] Wang Hongyu1,Feng Jiachun1|Huang Wei1**|Wei Wei2 **. Organic Functional Materials Based on Cross-shaped Conjunction Structures [J]. Progress in Chemistry, 2007, 19(0203): 276-282.
[14] Sun Xiaolin,Hong Guangyan. Combinatorial Chemistry Used in Synthesizing Functional Materials [J]. Progress in Chemistry, 2001, 13(05): 398-.
[15] Guo Guocong,Yao Yuangen,Wu Kechen,Wu Ling,Huang Jinshun. Studies on the Structure-Sensitive Functional Materials [J]. Progress in Chemistry, 2001, 13(02): 151-.