中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1645-1654 DOI: 10.7536/PC140634 Previous Articles   Next Articles

• Review •

Preparation of Metal-Organic Frameworks and Application for CO2 Adsorption and Separation

Jiang Ning1,2, Deng Zhiyong*1, Wang Gongying*1, Liu Shaoying1   

  1. 1. Chengdu Organic Chemicals CO. LTD ( Chengdu Institute of Organic Chemistry), Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Key Technology R & D Program of China (No. 2013BAC11B05),the 1000 Talents Program of Sichuan and Talents Program of Chengdu

PDF ( 4241 ) Cited
Export

EndNote

Ris

BibTeX

Metal-organic frameworks (MOFs) is one of research hot topic in material area, has potential to become an important material for CO2 adsorption and separation.Three points are introduced,including development and characteristics of MOFs,breakthrough progress of MOFs in CO2 adsorption and separation,preparation of MOFs by traditional synthesis and green methods. Mechanism of MOFs for CO2 adsorption and some special characteristics and advantages of MOFs compared with traditional adsorption materials are discussed. MOFs modification and improvement methods are introduced. Moreover, adsorption capacity and selectivity of MOFs for single-component CO2, CO2/CH4, CO2/N2 are given. Conventional MOFs preparation techniques could not satisfy the large-scale production for CO2 capture, so mechanical chemical synthesis and wet mineral weathering methods are discussed,which have some distinguishing features, such as greenization, solvent-free, low-energy, simplification and so on. Both of them are valuable for research and potentially practical technologies. With global warming and non-renewable fossil fuels consuming problems becoming more and more serious, studying and developing a series of MOFs materials to meet the requirements of carbon capture and storage(CCS) technology are extremely urgent and still had a lot of work to do.

Contents
1 Introduction
2 Development of metal-organic framework materials
2.1 MOFs
2.2 Classification of MOFs
2.3 Characteristics of MOFs
2.4 The effect of moisture on MOFs
3 Studied of MOFs materials in the CO2 adsorption and separation
3.1 Adsorption and separation of CO2 in single component
3.2 Adsorption and separation of CO2 from multi-components
4 MOFs conventional synthesis and green preparation methods
4.1 Conventional synthesis methods
4.2 Low energy consumption and green preparation methods
5 Conclusion

CLC Number: 

[1] Kember M R, Williams C K. J. Am. Chem. Soc., 2012, 134: 15676.
[2] Bustamante F, Orrego A F, Villegas S, Villa A L. Ind. Eng. Chem. Res., 2012, 51: 8945.
[3] Cör D, Škerget M, Knez ?. J. Chem. Eng. Data, 2014, 59: 653.
[4] 中华人民共和国国务院(State Council of the People's Republic of China), 中国应对气候变化国家方案(China's National Programme to Address Climate Change), 国发(2007)17号(2007-06-03).[2014-05-01] http://www.gov.cn/gongbao/content/2007/content_678918.htm
[5] Zhao Z X, Ma X L, Kasik A, Li Z, Lin Y S. Ind. Eng. Chem. Res., 2013, 52: 1102.
[6] McEwen J, Hayman J D, Yazaydin A O. Chem. Phys., 2013, 412: 72.
[7] Kong X Q, Deng H X, Yan F Y, Kim J, Swisher J A, Smit B, Yaghi O M, Reimer J A. Science, 2013, 341: 882.
[8] Zalomaeva O V, Chibiryaev A M, Kovalenko K A, Kholdeeva O A, Balzhinimaev B S, Fedin V P. J. Catal., 2013, 298: 179.
[9] Munn A S, Clarkson G J, Millange F, Dumont Y, Walton R I. Cryst. Eng. Comm., 2013, 15: 9679.
[10] Kent C A, Liu D M, Ito A, Zhang T, Brennaman M K, Meyer T J, Lin W B. J. Mater. Chem. A, 2013, 1: 14982.
[11] Feng Y F, Jiang H, Li S N, Wang J, Jing X Y, Wang Y R, Chen M. Colloids Surf. A: Physicochem. Eng. Aspects, 2013, 431: 87.
[12] Forgan R S, Smaldone R A, Gassensmith J J, Furukawa H, Cordes D B, Li Q W, Wilmer C E, Botros Y Y, Snurr R Q, Slawin A M Z, Stoddart J F. J. Am. Chem. Soc., 2012, 134: 406.
[13] Morris W, Volosskiy B, Demir S, Gándara F, McGrier P L, Furukawa H, Cascio D, Stoddart J F, Yaghi O M. Inorg. Chem., 2012, 51: 6443.
[14] Buser H J, Schwarzenbach D, Petter W, Ludi A. Inorg. Chem., 1977, 16(11): 2704.
[15] Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S. Angew. Chem. Int. Ed., 1997, 36(16): 1725.
[16] Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(18): 276.
[17] Gutiérrez I, Díaz E, Vega A, Ordóňez S. J. Chromatogr. A, 2013, 1274: 173.
[18] Park K S, Zheng N, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.
[19] Chen Y F, Babarao R, Sandler S I, Jiang J W. Langmuir, 2010, 26(11): 8743.
[20] Morris W, Doonan C J, Yaghi O M. Inorg. Chem., 2011, 50: 6853.
[21] Kim K J, Li Y J, Kreider P B, Chang C H, Wannenmacher N, Thallapally P K, Ahn H G. Chem. Commun., 2013, 49: 11518.
[22] Zhang T T, Yang Y, Wang H T, Sun F X, Zhao X J, Jia J T, Liu J R, Guo W, Cui X Q, Gu J K, Zhu G S. Cryst. Growth Des., 2013, 13: 5261.
[23] Rood J A, Noll B C, Henderson K W. Inorg. Chem., 2006, 45: 5521.
[24] Martí-Gastaldo C, Antypov D, Warren J E, Briggs M E, Chater P A, Wiper P V, Miller G J, Khimyak Y Z, Darling G R, Berry N G, Rosseinsky M J. Nature Chem., 2014, 6: 343.
[25] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341: 974.
[26] Batten S R, Champness N R, Chen X M, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh M P, Reedijk J. Pure Appl. Chem., 2013, 85(8): 1715.
[27] Öhrström L. IUPC 44th World Chemistry Congress (Materials Science), Istanbul. 2013. 1371.
[28] Gassensmith J J, Furukawa H, Smaldone R A, Forgan R S, Botros Y Y, Yaghi O M, Stoddart J F. J. Am. Chem. Soc., 2011, 133: 15312.
[29] Kitagawa S, Kitaura R, Noro S I. Angew. Chem. Int. Ed., 2004, 43: 2334.
[30] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319: 939.
[31] Grzesiak A L, Uribe F J, Ockwig N W, Yaghi O M, Matzger A J. Angew. Chem. Int. Ed., 2006, 45: 2553.
[32] Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336: 1018.
[33] Yaghi O M, Li Q W. MRS Bull., 2009, 34: 682.
[34] Kaye S S, Dailly A, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129: 14176.
[35] Jiang H L, Liu B, Lan Y Q, Kuratani K, Akita T, Shioyama H, Zong F Q, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854.
[36] Nijkamp M G, Raaymakers J E M J, van Dillen A J, de Jong K P. Appl. Phys. A, 2001, 72: 619.
[37] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.
[38] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S B T, Yazayd?n A Ö, Hupp J T. J. Am. Chem. Soc., 2012, 134: 15016.
[39] Choi K M, Jeon H J, Kang J K, Yaghi O M. J. Am. Chem. Soc., 2011, 133: 11920.
[40] Fracaroli A M, Furukawa H, Suzuki M, Dodd M, Okajima S, Gándara F, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 8863.
[41] Furukawa H, Gándara F, Zhang Y B, Jiang J C, Queen W L, Hudson M R, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 4369.
[42] Finsy V, Ma L, Alaerts L, Vos D E D, Baron G V, Denayer J F M. Microporous Mesoporous Mater., 2009, 120: 221.
[43] Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127, 17998.
[44] Saha D, Bao Z B, Jia F, Deng S G. Environ. Sci. Technol., 2010, 44(5): 1820.
[45] Farha O K, Yazaydn A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T, Nature Chem., 2010, 2: 944.
[46] Mu B, Schoenecker P M, Walton K S. J. Phys. Chem. C, 2010, 114: 6464.
[47] Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld G D, Chang J S, Hong D Y, Hwang Y K, Jhung S H, Férey G. Langmuir, 2008, 24: 7245.
[48] Surblé S, Millange F, Serre C, Düren T, Latroche M, Bourrelly S, Llewellyn P L, Férey G. J. Am. Chem. Soc., 2006, 128: 14889.
[49] Volkringer C, Loiseau T, Haouas M, Taulelle F, Popov D, Burghammer M, Riekel C, Zlotea C, Cuevas F, Latroche M, Phanon D, Knöfelv C, Llewellyn P L, Férey G. Chem. Mater., 2009, 21: 5783.
[50] Dybtsev D N, Chun H, Yoon S H, Kim D, Kim K. J. Am. Chem. Soc., 2004, 126: 32.
[51] Nune S K, Thallapally P K, Dohnalkova A, Wang C M, Liuc J, Exarhosc G J. Chem. Commun., 2010, 46: 4878.
[52] Phan A, Doonan C J, Uribe-romo F J, Knobler C B, O'Keeffe M, Yaghi O M. Acc. Chem. Res., 2010, 43(1): 58.
[53] Liang Z J, Marshall M, Chaffee A L. Energy Fuels, 2009, 23: 2785.
[54] Huang Y T, Qin W P, Li Z, Li Y W. Dalton Trans., 2012, 41: 9283.
[55] Perez E V, Balkus K J, Ferraris J P, Musselman I H. J. Membrane Sci., 2009, 328: 165.
[56] Bao Z B, Yu L, Ren Q L, Lu X Y, Deng S G. J. Colloid Interface Sci., 2011, 353: 549.
[57] Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 3875.
[58] Wang B, Côté A P, Furukawa H, O'Keeffe M, Yaghi O M. Nature, 2008, 453: 207.
[59] Cavenati S, Grande C A, Rodrigues A E. Ind. Eng. Chem. Res., 2008, 47: 6333.
[60] Mu B, Li F, Walton K S. Chem. Commun., 2009, 2493.
[61] Bagabas A A, Frasconi M, Iehl J, Hauser B, Farha O K, Hupp J T, Hartlieb K J, Botros Y Y, Stoddart J F. Inorg. Chem., 2013, 52: 2854.
[62] Surblé S, Millange F, Serre C, Düren T, Latroche M, Bourrelly S, Llewellyn P L, Férey G. J. Am. Chem. Soc., 2006, 128: 14889.
[63] Hao X R, Wang X L, Shao K Z, Yang G S, Su Z M, Yuan G. CrystEngComm, 2012, 14: 5596.
[64] McKinstry C, Cussen E J, Fletcher A J, Patwardhan S V, Sefcik J. Cryst. Growth Des., 2013, 13: 5481.
[65] Sarawade P, Tan H, Polshettiwar V. ACS Sustainable Chem. Eng., 2013, 1: 66.
[66] Tranchemontagne D J, Hunt J R, Yaghi O M. Tetrahedron, 2008, 64: 8553.
[67] Bourne S A, Kilkenny M, Nassimbeni L R. J. Chem. Soc., Dalton Trans., 2001, 1176.
[68] Pichon A, James S L. CrystEngComm, 2008, 10: 1839.
[69] Pichon A, Lazuen-Garay A, James S L. CrystEngComm, 2006, 8: 211.
[70] Yuan W B, Garay A L, Pichon A, Clowes R, Wood C D, Cooper A I, James S L. CrystEngComm, 2010, 12: 4063.
[71] Friš D? i D? T, Fábián L. CrystEngComm, 2009, 11: 743.
[72] Friš D? i D? T, Reid D G, Halasz I, Stein R S, Dinnebier R E, Duer M J. Angew. Chem. Int. Ed., 2010, 49: 712.
[73] Yuan W B, Friš D? i D? T, Apperley D, James S L. Angew. Chem. Int. Ed., 2010, 122: 4008.
[74] Beldon P J, Fábián L, Stein R S, Thirumurugan A, Cheetham A K, Friš D? i D? T. Angew. Chem. Int. Ed., 2010, 49: 9640.
[75] Qi F, Stein R S, Friš D? i D? T. Green Chem., 2014, 16: 121.

[1] Mengrui Yang, Yuxin Xie, Dunru Zhu. Synthetic Strategies of Chemically Stable Metal-Organic Frameworks [J]. Progress in Chemistry, 2023, 35(5): 683-698.
[2] Jiaye Li, Peng Zhang, Yuan Pan. Single-Atom Catalysts for Electrocatalytic Carbon Dioxide Reduction at High Current Densities [J]. Progress in Chemistry, 2023, 35(4): 643-654.
[3] Liu Yvfei, Zhang Mi, Lu Meng, Lan Yaqian. Covalent Organic Frameworks for Photocatalytic CO2 Reduction [J]. Progress in Chemistry, 2023, 35(3): 349-359.
[4] Yiling Tan, Shichun Li, Xi Yang, Bo Jin, Jie Sun. Strategies of Improving Anti-Humidity Performance for Metal Oxide Semiconductors Gas-Sensitive Materials [J]. Progress in Chemistry, 2022, 34(8): 1784-1795.
[5] Muya Zhang, Jiaqi Liu, Wang Chen, Liqiang Wang, Jie Chen, Yi Liang. The Mechanism of Protein Condensation in Neurodegenerative Diseases [J]. Progress in Chemistry, 2022, 34(7): 1619-1625.
[6] Yajuan Wu, Jingwen Luo, Yongji Huang. Catalytic Synthesis of N,N-Dimethylformamide from Carbon Dioxide and Dimethylamine [J]. Progress in Chemistry, 2022, 34(6): 1431-1439.
[7] Shiyu Li, Yongguang Yin, Jianbo Shi, Guibin Jiang. Application of Covalent Organic Frameworks in Adsorptive Removal of Divalent Mercury from Water [J]. Progress in Chemistry, 2022, 34(5): 1017-1025.
[8] Yaoyu Qiao, Xuehui Zhang, Xiaozhu Zhao, Chao Li, Naipu He. Preparation and Application of Graphene/Metal-Organic Frameworks Composites [J]. Progress in Chemistry, 2022, 34(5): 1181-1190.
[9] Jie Zhao, Shuai Deng, Li Zhao, Ruikai Zhao. CO2 Adsorption Capture in Wet Gas Source: CO2/H2O Co-Adsorption Mechanism and Application [J]. Progress in Chemistry, 2022, 34(3): 643-664.
[10] Xiaoqing Yin, Weihao Chen, Boyuan Deng, Jialu Zhang, Wanqi Liu, Kaiming Peng. The Application and Mechanism of Superwetting Membrane in Demulsification of Oil-in-Water Emulsions [J]. Progress in Chemistry, 2022, 34(3): 580-592.
[11] Xin Pang, Shixiang Xue, Tong Zhou, Hudie Yuan, Chong Liu, Wanying Lei. Advances in Two-Dimensional Black Phosphorus-Based Nanostructures for Photocatalytic Applications [J]. Progress in Chemistry, 2022, 34(3): 630-642.
[12] Wei Li, Tiangui Liang, Yuanchuang Lin, Weixiong Wu, Song Li. Machine Learning Accelerated High-Throughput Computational Screening of Metal-Organic Frameworks [J]. Progress in Chemistry, 2022, 34(12): 2619-2637.
[13] Baoyou Yan, Xufei Li, Weiqiu Huang, Xinya Wang, Zhen Zhang, Bing Zhu. Synthesis of Metal-Organic Framework-NH2/CHO and Its Application in Adsorption Separation [J]. Progress in Chemistry, 2022, 34(11): 2417-2431.
[14] Kang Chun, Lin Yanxin, Jing Yuanju, Wang Xinbo. Preparation and Environmental Applications of 2D Nanomaterial MXenes [J]. Progress in Chemistry, 2022, 34(10): 2239-2253.
[15] Wu Mingming, Lin Kaige, Aydengul Muhyati, Chen Cheng. Research on the Construction and Application of Superwetting Materials with Photothermal Effect [J]. Progress in Chemistry, 2022, 34(10): 2302-2315.