中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (10): 1690-1700 DOI: 10.7536/PC140515 Previous Articles   Next Articles

• Review •

Electrically Responsive Photonic Crystals

Zhang Huijie1,2, Wang Shirong1,2, Xiao Yin1,2, Li Xianggao*1,2   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072;
    2. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21102098) and the National High Technology Research and Development Program of China (863 Program, No. 2013AA032003)

PDF ( 1851 ) Cited
Export

EndNote

Ris

BibTeX

Photonic crystals are new functional materials with periodic dielectric constants and photonic bandgaps and they can control the transmission of light. Responsive photonic crystals can be prepared by introducing external stimuli -sensitive materials into the interspace of photonic crystals. Electrically responsive photonic crystals are formed by combining electroactive materials with photonic crystal structure. They can be applied to reflective full color display exhibiting unique advantages over other display technologies. In this review, the structure and the responsive mechanism of electrically responsive photonic crystal device are mainly introduced. Besides, according to different kinds of electroactive materials which are introduced into photonic crystals, the electrically responsive photonic crystals can be classified into liquid crystal-based, polyelectrolyte hydrogel-based, organometallic polymer gel-based, conductive polymer-based and core-shell electrically responsive photonic crystals. The development in recent years of all kinds of them are summarized. The application, existing problems and outlook in the field of reflective full color display device are presented.

Contents
1 Introduction
2 Responsive mechanism of responsive photonic crystals
3 Device structure of electrically responsive photonic crystals
3.1 Conductive substrate and electrolyte
3.2 Opal and inverse opal photonic crystal electroactive materials
4 Classification of electrically responsive photonic crystals
4.1 Liquid crystal-based electrically responsive photonic crystals
4.2 Polyelectrolyte hydrogel-based electrically responsive photonic crystals
4.3 Organometallic polymer gel-based electrically responsive photonic crystals
4.4 Conductive polymer-based electrically responsive photonic crystals
4.5 Core-shell electrically responsive photonic crystals
5 Application of electrically responsive photonic crystals
6 Existing problems and outlook

CLC Number: 

[1] John S. Phys. Rev. Lett., 1987, 58: 2486.
[2] Yablonovitch E. Phys. Rev. Lett., 1987, 58: 2059.
[3] Russell P S J. J. Lightwave Technol., 2006, 24: 4729.
[4] Mathews S, Farrell G, Semenova Y. Sensors and Actuators A: Phys., 2011, 167: 54.
[5] Norris D J. Nat. Mater., 2007, 6: 177.
[6] Figotin A, Godin Y A,Vitebsky I. Phys. Rev. B, 1998, 57: 2841.
[7] Li H, Wang J X, Lin H, Xu L, Xu W, Wang R M, Song Y L,Zhu D B. Adv. Mater., 2010, 22: 1237.
[8] Jeong U, Xia Y N. Angew. Chem. Int. Ed., 2005, 117: 3159.
[9] Zhang Y F, Chan C C, Sun J. Sensors and Actuators, A: Phys., 2010, 157: 276.
[10] Barry R A, Wiltzius P. Langmuir, 2006, 22: 1369.
[11] Tian E, Wang J X, Zheng Y M, Song Y L, Jiang L, Zhu D B. J. Mater. Chem., 2008, 18: 1116.
[12] Jiang H L, Zhu Y H, Chen C, Shen J H, Bao H, Peng L M, Yang X L, Li C Z. New J. Chem., 2012, 36: 1051.
[13] Honda M, Seki T, Takeoka Y. Adv. Mater., 2009, 21: 1801.
[14] Kobler J, Lotsch B V, Ozin G A, Bein T. ACS Nano, 2009, 3: 1669.
[15] Wang Z H, Zhang J H, Xie J, Li C, Li Y F, Liang S, Tian Z C, Wang T Q, Zhang H, Li H B. Adv. Funct. Mater., 2010, 20: 3784.
[16] Wang Z H, Zhang J H, Li J X, Xie J, Li Y F, Liang S, Tian Z C, Li C, Wang Z Y, Wang T Q. J. Mater. Chem., 2011, 21: 1264.
[17] Arsenault A C, Clark T J, von Freymann G, Cademartiri L, Sapienza R, Bertolotti J, Vekris E, Wong S, Kitaev V,Manners I. Nat. Mater., 2006, 5: 179.
[18] Kim H, Ge J P, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y D, Kwon S. Nat. Photonics, 2009, 3: 534.
[19] Fudouzi H, Xia Y N. Adv. Mater., 2003, 15: 892.
[20] Fudouzi H, Xia Y N. Langmuir, 2003, 19: 9653.
[21] Ge J P, Goebl J, He L, Lu Z D, Yin Y D. Adv. Mater., 2009, 21: 4259.
[22] Xu X L, Goponenko A V, Asher S A. J. Am. Chem. Soc., 2008, 130: 3113.
[23] Sumioka K, Kayashima H, Tsutsui T. Adv. Mater., 2002, 14: 1284.
[24] Kamenjicki Maurer M, Lednev I K, Asher S A. Adv. Funct. Mater., 2005, 15: 1401.
[25] Kurihara S, Moritsugu M, Kubo S, Kim S, Ogata T, Nonaka T,Sato O. Eur. Polym. J., 2007, 43: 4951.
[26] Arsenault A C, Puzzo D P, Manners I,Ozin G A. Nat. Photonics, 2007, 1: 468.
[27] Puzzo D P, Arsenault A C, Manners I,Ozin G A. Angew. Chem. Int. Ed., 2009, 121: 961.
[28] Ge J P, Yin Y D. Adv. Mater., 2008, 20: 3485.
[29] Sabataityte J, Simkiene I, Reza A, Babonas G J, Vaisnoras R, Rasteniene L, Kurdyukov D, Golubev V. Superlattices Microstruct., 2008, 44: 664.
[30] Pu S L, Liu M. J. Alloys Compd., 2009, 481: 851.
[31] Weissman J M, Sunkara H B, Albert S T, Asher S A. Science, 1996, 274: 959.
[32] Lee Y J, Braun P V. Adv. Mater., 2003, 15: 563.
[33] López C. Adv. Mater., 2003, 15: 1679.
[34] 韩国志(Han G Z),孙立国(Sun L G). 化学通报(Chemistry), 2009, 72: 307.
[35] Liu C Y, Peng Y T, Wang J Z,Chen L W. Phys. Rev. B, 2007, 388: 124.
[36] Ozaki M, Shimoda Y, Kasano M,Yoshino K. Adv. Mater., 2002, 14: 514.
[37] Warner M,Terentjev E M. Liquid crystal elastomers. Oxford University Press, 2003.
[38] Ohm C, Morys M, Forst F R, Braun L, Eremin A, Serra C, Stannarius R, Zentel R. Soft Matter, 2011, 7: 3730.
[39] Yang H, Buguin A, Taulemesse J M, Kaneko K, Méry S, Bergeret A, Keller P. J. Am. Chem. Soc., 2009, 131: 15000.
[40] Cordoyiannis G, Sánchez-Ferrer A, Finkelmann H, Ro?i D? B, ?umer S, Kutnjak Z. Liq. Cryst., 2010, 37: 349.
[41] Sánchez-Ferrer A, Merekalov A,Finkelmann H. Macromol. Rapid Commun., 2011, 32: 671.
[42] Spillmann C M, Ratna B R, Naciri J. Appl. Phys. Lett., 2007, 90: 021911.
[43] Ohm C, Brehmer M, Zentel R. Adv. Mater., 2010, 22: 3366.
[44] Yang H, Ye G, Wang X G, Keller P. Soft Matter, 2011, 7: 815.
[45] Jiang Y, Xu D, Li X S, Lin C X, Li W N, An Q, Tao C A, Tang H, Li G T. J. Mater. Chem., 2012, 22: 11943.
[46] McConney M E, Tondiglia V P, Natarajan L V, Lee K M, White T J, Bunning T J. Advanced Optical Materials, 2013, 1: 417.
[47] Hikmet R, Kemperman H. Nature, 1998, 392: 476.
[48] Hu W, Zhao H, Song L, Yang Z, Cao H, Cheng Z, Liu Q,Yang H. Adv. Mater., 2010, 22: 468.
[49] 闫彬(Yan B).沈阳理工大学硕士论文(Master Thesis of Shenyang University of Technology), 2012.
[50] Alexander G P, Yeomans J M. Liq. Cryst., 2009, 36: 1215.
[51] Alexander G P,Yeomans J M. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, 2006, 74: 061706.
[52] Castles F, Morris S M, Terentjev E M, Coles H J. Phys. Rev. Lett., 2010, 104: 157801.
[53] Henrich O, Stratford K, Cates M, Marenduzzo D. Phys. Rev. Lett., 2011, 106: 107801.
[54] Ravnik M, Alexander G P, Yeomans J M, ?umer S. Proceedings of the National Academy of Sciences, 2011, 5188.
[55] Zumer S, Ravnik M, Porenta T, Alexander G P,Yeomans J M. SPIE Photonic Devices Applications, 2010, 77750H.
[56] Coles H J, Pivnenko M N. Nature, 2005, 436: 997.
[57] Rao L H, Yan J, Wu S T, Yamamoto S, Haseba Y. Appl. Phys. Lett., 2011, 98: 081109.
[58] Cheng H C, Yan J, Ishinabe T, Wu S T. Appl. Phys. Lett., 2011, 98: 261102.
[59] 吴婷(Wu T), 文秀芳(Wen X F), 皮丕辉(Pi P H), 程江(Cheng J), 杨卓如(Yang Z R). 材料导报(Materials Review), 2009, 23: 53.
[60] Ueno K, Matsubara K, Watanabe M, Takeoka Y. Adv. Mater., 2007, 19: 2807.
[61] Ueno K, Sakamoto J, Takeoka Y,Watanabe M. J. Mater. Chem., 2009, 19: 4778.
[62] Lu Y J, Xia H W, Zhang G Z, Wu C. J. Mater. Chem., 2009, 19: 5952.
[63] Kang Y, Walish J J, Gorishnyy T, Thomas E L. Nat. Mater., 2007, 6: 957.
[64] Rulkens R, Ni Y, Manners I. J. Am. Chem. Soc., 1994, 116: 12121.
[65] Ni Y, Rulkens R, Pudelski J K, Manners I. Macromol. Rapid Commun., 1995, 16: 637.
[66] Ni Y, Rulkens R, Manners I. J. Am. Chem. Soc., 1996, 118: 4102.
[67] Hilf S, Cyr P W, Rider D A, Manners I, Ishida T, Chujo Y. Macromol. Rapid Commun., 2005, 26: 950.
[68] Du V A, Manners I. Macromolecules, 2013, 46: 4742.
[69] Wang X J, Wang L, Wang J J, Chen T. J. Phys. Chem. B, 2004, 108: 5627.
[70] Chen T, Wang L, Jiang G H, Wang J J, Dong X C, Wang X J, Zhou J F, Wang C L, Wang W. J. Phys. Chem. B, 2005, 109: 4624.
[71] Wang J J, Wang L, Wang X J, Chen T, Yu H J, Wang W,Wang C L. Mater. Lett., 2006, 60: 1416.
[72] Arsenault A C, Míguez H, Kitaev V, Ozin G A,Manners I. Adv. Mater., 2003, 15: 503.
[73] Xu L, Wang J X, Song Y L, Jiang L. Chem. Mater., 2008, 20: 3554.
[74] Han M G, Shin C G, Jeon S J, Shim H, Heo C J, Jin H S, Kim J W, Lee S Y. Adv. Mater., 2012, 24: 6438.
[75] Sato O, Kubo S, Gu Z Z. Acc. Chem. Res., 2008, 42: 1.

[1] Weijun Huang, Ning Zhu*, Zheng Fang, Kai Guo*. Synthesis of Biobased Furan-Containing Polyamides [J]. Progress in Chemistry, 2018, 30(12): 1836-1843.
[2] Zhichao Yu, Chun Tang, Li Yao, Qing Gao, Zushun Xu, Tingting Yang. Preparation of Hollow Mesoporous Materials by Polymer-Based Templates [J]. Progress in Chemistry, 2018, 30(12): 1899-1907.
[3] Jinxin Yi, Zhipeng Huo, Abdullah M. Asiri, Khalid A. Alamry, Jiaxing Li. Development and Application of Electrolytes in Supercapacitors [J]. Progress in Chemistry, 2018, 30(11): 1624-1633.
[4] Changyuan Bao, Jiajun Han*, Jinning Cheng, Ruitao Zhang. Electrode Materials Blended with Graphene/Polyaniline for Supercapacitor [J]. Progress in Chemistry, 2018, 30(9): 1349-1363.
[5] Wanru Zhao, Xin Hu, Ning Zhu, Zheng Fang, Kai Guo. Ionic Polymerizations in Continuous Flow [J]. Progress in Chemistry, 2018, 30(9): 1330-1340.
[6] Zhi Li, Houliang Tang, Anchao Feng, San H. Thang. Synthesis of Zwitterionic Polymers by Living/Controlled Radical Polymerization and Its Applications [J]. Progress in Chemistry, 2018, 30(8): 1097-1111.
[7] Yihuan Liu, Xin Hu, Ning Zhu, Kai Guo. Microfluidic Synthesis of Micro-and Nanoparticles [J]. Progress in Chemistry, 2018, 30(8): 1133-1142.
[8] Fengyang Zhao, Yongjian Jiang, Tao Liu, Chunchun Ye. Nanofiltration Membrane Based on Novel Materials [J]. Progress in Chemistry, 2018, 30(7): 1013-1027.
[9] Fanfan Du, Ying Zheng, Guorong Shan, Yongzhong Bao, Suyun Jie*, Pengju Pan*. Hydrogen Bonding-Based Non-Metallic Organocatalysts for Ring-Opening Polymerization of Lactones [J]. Progress in Chemistry, 2018, 30(6): 710-718.
[10] Ting Wang, Rui Xue, Yuli Wei, Mingyue Wang, Hao Guo, Wu Yang. Development and Applications of Covalent Organic Frameworks(COFs) Materials: Gas Storage, Catalysis and Chemical Sensing [J]. Progress in Chemistry, 2018, 30(6): 753-764.
[11] Chengjiang Zhang, Xiaoyan Yuan, Zeli Yuan, Yongke Zhong, Zhuomin Zhang, Gongke Li. Covalent Organic Framework Materials Based on Schiff-Base Reaction [J]. Progress in Chemistry, 2018, 30(4): 365-382.
[12] Zhirui Dong, Weijun Tong*. Shear-Responsive Drug Delivery Systems [J]. Progress in Chemistry, 2018, 30(2/3): 190-197.
[13] Hao Zhang, Fang Xu, Heying Wang, Tao Jiang, Zhi Ma. Controlled Synthesis of New Polymethylene-Based Copolymers [J]. Progress in Chemistry, 2018, 30(2/3): 179-189.
[14] Yan Zhang, Xuejie Liu, Nan Yan, Yuexin Hu, Haiying Li, Yutian Zhu. Confined Self-Assembly of Block Copolymers within the Three-Dimensional Soft Space [J]. Progress in Chemistry, 2018, 30(2/3): 166-178.
[15] Changlu Zhou, Zhong Xin*. Fabrication, Properties and Applications of Functional Surface Based on Polybenzoxazine [J]. Progress in Chemistry, 2018, 30(1): 112-123.
Viewed
Full text


Abstract

Electrically Responsive Photonic Crystals