中文
Announcement
More
Progress in Chemistry 2014, Vol. 26 Issue (09): 1516-1526 DOI: 10.7536/PC140355 Previous Articles   Next Articles

• Review •

SERS-Based Nucleic Acid Detection

Song Chunyuan, Yang Yanjun, Wang Lianhui*   

  1. Key Lab Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received: Revised: Online: Published:
  • Supported by:

    The work was supported by the National Key Basic Research Program of China (973) (No. 2012CB933301), the National Natural Science Foundation of China (No. 61302027), the Natural Science Foundation of Jiangsu Province (No. BK20130871), the Program for Changjiang Scholars and Innovative Research Team in University (No. IRT1148), and the Open Research Fund of State Key Laboratory of Bioelectronics (No. 2013G2)

PDF ( 2587 ) Cited
Export

EndNote

Ris

BibTeX

Surface-enhanced Raman scattering (SERS) technology has revealed considerably potential application in the field of life science due to its ultrasensitive detectability and non-destructivity, which is considered as a powerful tool for detection of nucleic acid. The article reviews recent advances in SERS-based detection of nucleic acids, including labeled and label-free detections as well as other methods. The principles and detection strategies of these different methods are introduced, especially the labeled detection using SERS tags via sandwich structure and hairpin structure. We also made a detailed explanation of the basic structure of SERS tags and their recent developments. By analyzing the detection strategies and summarizing recent achievements, some issues related to SERS-based nucleic acid detection techniques are also discussed.

Contents
1 Introduction
2 Principle of SERS enhancement
3 Nucleic acid detection based on SERS
3.1 Label-free detection
3.2 Labeled detection
3.3 SERS-based other methods
4 Conclusion and outlook

CLC Number: 

[1] Lipkowski J, Ross P N. Adsorption of Molecules at Metal Electrodes. New York: Wiley. VCH, 1992.
[2] Fleischmann M, Hendra P, McQuillan A. Chem. Phys. Lett., 1974, 26(2): 163.
[3] Jeanmaire D L, van Duyne R P. J. Electroanal. Chem. Interfacial Electrochem., 1977, 84(1): 1.
[4] Albrecht M G, Creighton J A. J. Am. Chem. Soc., 1977, 99(15): 5215.
[5] Betz J F, Cheng Y, Rubloff G W. Analyst, 2012, 137(4): 826.
[6] Hering K, Cialla D, Ackermann K, Dörfer T, Möller R, Schneidewind H, Mattheis R, Fritzsche W, Rösch P, Popp J. Anal. Bioanal. Chem., 2008, 390(1): 113.
[7] Palonpon A F, Ando J, Yamakoshi H, Dodo K, Sodeoka M, Kawata S, Fujita K. Nat. Protoc., 2013, 8(4): 677.
[8] Vendrell M, Maiti K K, Dhaliwal K, Chang Y T. Trends Biotechnol., 2013, 31(4): 249.
[9] Wang Y, Ravindranath S, Irudayaraj J. Anal. Bioanal. Chem., 2011, 399(3): 1271.
[10] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S. Phys. Rev. Lett., 1997, 78(9):1667.
[11] Nie S, Emory S R. Science, 1997, 275(5303): 1102.
[12] Porter M D, Lipert R J, Siperko L M, Wang G, Narayanan R. Chem. Soc. Rev., 2008, 37(5): 1001.
[13] Mulvaney S P, Musick M D, Keating C D, Natan M J. Langmuir, 2003, 19(11): 4784.
[14] Kneipp J, Kneipp H, Wittig B, Kneipp K. Nanomed. Nanotechnol. Biol. Med., 2010, 6(2): 214.
[15] Kirtley J R, Jha S S, Tsang J C. Solid State Commun., 1980, 35(7): 509.
[16] Park T H, Galperin M. Phys. Rev. B, 2011, 84(7): 075447.
[17] Xu H, Aizpurua J, Kll M, Apell P. Phys. Rev. E, 2000, 62(3): 4318.
[18] Doering W E, Nie S. J. Phys. Chem. B, 2002, 106(2): 311.
[19] Campion A, Kambhampati P. Chem. Soc. Rev., 1998, 27(4): 241.
[20] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107(3): 668.
[21] Kneipp K, Kneipp H, Itzkan I, Dasari R R, Feld M S. J. Phys. Condens. Matter, 2002, 14(18): R597.
[22] Michaels A M, Jiang J, Brus L. J. Phys. Chem. B, 2000, 104(50): 11965.
[23] Xu H, Bjerneld E J, Kll M, Börjesson L. Phys. Rev. Lett., 1999, 83(21): 4357.
[24] Li W, Camargo P H, Lu X, Xia Y. Nano Lett., 2008, 9(1): 485.
[25] Kerker M. Acc. Chem. Res., 1984, 17(8): 271.
[26] Moskovits M. Rev. Mod. Phys., 1985, 57(3): 783.
[27] Feuillie C, Merheb M M, Gillet B, Montagnac G, Daniel I, Hnni C. PLoS One, 2011, 6(5): e17847.
[28] Pafundo S, Gullì M, Marmiroli N. Anal. Bioanal. Chem., 2010, 396(5): 1831.
[29] Rosi N L, Mirkin C A. Chem. Rev., 2005, 105(4): 1547.
[30] Sassolas A, Blum L J, Leca-Bouvier B D. Biosens. Bioelectron., 2011, 26(9): 3725.
[31] Barhoumi A, Zhang D, Tam F, Halas N J. J. Am. Chem. Soc., 2008, 130(16): 5523.
[32] Barhoumi A, Halas N J. J. Am. Chem. Soc., 2010, 132(37): 12792.
[33] Panikkanvalappil S R, Mackey M A, El-Sayed M A. J. Am. Chem. Soc., 2013, 135(12): 4815.
[34] Driskell J, Seto A, Jones L, Jokela S, Dluhy R, Zhao Y P, Tripp R. Biosens. Bioelectron., 2008, 24(4): 917.
[35] Abell J L, Garren J M, Driskell J D, Tripp R A, Zhao Y. J. Am. Chem. Soc., 2012, 134(31):12889.
[36] Erol M, Han Y, Stanley S K, Stafford C M, Du H, Sukhishvili S. J. Am. Chem. Soc., 2009, 131(22): 7480.
[37] Langille M R, Personick M L, Zhang J, Mirkin C A. J. Am. Chem. Soc., 2012, 134(35): 14542.
[38] Personick M L, Langille M R, Zhang J, Mirkin C A. Nano Lett., 2011, 11(8): 3394.
[39] Quan Z, Wang Y, Fang J. Acc. Chem. Res., 2012, 46(2): 191.
[40] Garcia-Leis A, Garcia-Ramos J V, Sanchez-Cortes S. J. Phys. Chem. C, 2013, 117(15): 7791.
[41] Jiang Q, Jiang Z, Zhang L, Lin H, Yang N, Li H, Liu D, Xie Z, Tian Z. Nano Res., 2011, 4(6): 612.
[42] Khoury C G, Vo-Dinh T. J. Phys. Chem. C, 2008, 112(48): 18849.
[43] Miyamoto T, Saito S, Isobe T, Nakajima A, Matsushita S. Chem. Commun., 2012, 48(11): 1668.
[44] Jia W, Li J, Jiang L. ACS Appl. Mater. Interfaces, 2013, 5(15): 6886.
[45] Li J, Wu J, Zhang X, Liu Y, Zhou D, Sun H, Zhang H,Yang B. J. Phys. Chem. C, 2011, 115(9): 3630.
[46] Lu G, Li C, Shi G. Chem. Mater., 2007, 19(14): 3433.
[47] Sanchez-Gaytan B L, Qian Z, Hastings S P, Reca M L, Fakhraai Z, Park S J. J. Phys. Chem. C, 2013, 117(17): 8916.
[48] Pradhan M, Chowdhury J, Sarkar S, Sinha A K, Pal T. J. Phys. Chem. C, 2012, 116(45): 24301.
[49] Sajanlal P R, Pradeep T. Nano Res., 2009, 2(4): 306.
[50] Xie J, Zhang Q, Lee J Y, Wang D I. ACS Nano, 2008, 2(12): 2473.
[51] You H, Ji Y, Wang L, Yang S, Yang Z, Fang J, Song X, Ding B. J. Mater. Chem., 2012, 22(5): 1998.
[52] Pande S, Ghosh S K, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T. J. Phys. Chem. C, 2007, 111(29): 10806.
[53] Panigrahi S, Basu S, Praharaj S, Pande S, Jana S, Pal A, Ghosh S K, Pal T. J. Phys. Chem. C, 2007, 111(12): 4596.
[54] Wu L, Wang Z, Zong S, Huang Z, Zhang P, Cui Y. Biosens. Bioelectron., 2012, 38(1): 94.
[55] Li Z, Yuan J, Chen Y, Palmer R, Wilcoxon J. Appl. Phys. Lett., 2005, 87: 243103.
[56] Wang Y, Yan B, Chen L. Chem. Rev., 2012, 113(3): 1391.
[57] Yoon J, Choi N, Ko J, Kim K, Lee S, Choo J. Biosens. Bioelectron., 2013, 47: 62.
[58] Liang Y, Gong J L, Huang Y, Zheng Y, Jiang J H, Shen G L,Yu R Q. Talanta, 2007, 72(2): 443.
[59] Wang X X, Wu Q, Shan Z, Huang Q M. Biosens. Bioelectron., 2011, 26(8): 3614.
[60] Liu M, Wang Z, Zong S, Zhang R, Zhu D, Xu S, Wang C, Cui Y. Anal. Bioanal. Chem., 2013, 405(18): 6131.
[61] Wabuyele M B, Vo-Dinh T. Anal. Chem., 2005, 77(23): 7810.
[62] Driskell J D, Shanmukh S, Liu Y, Chaney S B, Tang X J, Zhao Y P, Dluhy R A. J. Phys. Chem. C, 2008, 112(4): 895.
[63] Song C, Abell J L, He Y, Murph S H, Cui Y, Zhao Y. J. Mater. Chem., 2012, 22(3): 1150.
[64] Tabatabaei M, Sangar A, Kazemi-Zanjani N, Torchio P, Merlen A, Lagugné-Labarthet F. J. Phys. Chem. C, 2013, 117(28): 14778.
[65] Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S. Anal. Chem., 2002, 74(9): 2217.
[66] Kim B, Tripp S L, Wei A. J. Am. Chem. Soc., 2001, 123(32): 7955.
[67] Mirkin C A, Letsinger R L, Mucic R C, Storhoff J J. Nature, 1996, 382(6592): 607.
[68] Santhanam V, Liu J, Agarwal R, Andres R P. Langmuir, 2003, 19(19): 7881.
[69] Cao Y C, Jin R, Mirkin C A. Science, 2002, 297(5586): 1536.
[70] Liu Y, Wu P. ACS Appl. Mater. Interfaces, 2013, 5(12): 5832.
[71] Braun G, Lee S J, Dante M, Nguyen T Q, Moskovits M, Reich N. J. Am. Chem. Soc., 2007, 129(20): 6378.
[72] Li M, Cushing S K, Liang H, Suri S, Ma D, Wu N. Anal. Chem., 2013, 85(4): 2072.
[73] Kang T, Yoo S M, Yoon I, Lee S Y, Kim B. Nano Lett., 2010, 10(4):1189.
[74] Zhang H, Harpster M H, Park H J, Johnson P A. Anal. Chem., 2011, 83(1): 254.
[75] Zhang H, Harpster M H, Wilson W C, Johnson P A. Langmuir, 2012, 28(8): 4030.
[76] Sun L, Yu C, Irudayaraj J. Anal. Chem., 2008, 80(9): 3342.
[77] Jin R, Cao Y C, Thaxton C S, Mirkin C A. Small, 2006, 2(3): 375.
[78] Li J M, Ma W F, You L J, Guo J, Hu J,Wang C C. Langmuir, 2013, 29(20): 6147.
[79] Wang H N, Dhawan A, Du Y, Batchelor D, Leonard D N, Misra V, Vo-Dinh T. Phys. Chem. Chem. Phys., 2013, 15(16): 6008.
[80] Wang H N, Fales A M, Zaas A K, Woods C W, Burke T, Ginsburg G S, Vo-Dinh T. Anal. Chim. Acta, 2013, 786: 153.
[81] Ngo H T, Wang H N, Fales A M, Vo-Dinh T. Anal. Chem., 2013, 85(13): 6378.
[82] Jung J, Chen L, Lee S, Kim S, Seong G H, Choo J, Lee E K, Oh C H, Lee S. Anal. Bioanal. Chem., 2007, 387(8): 2609.
[83] 胡娟(Hu J), 张春阳(Zhang C Y). 化学进展(Progress in Chemistry), 2010, 22(8): 1641.
[84] Dou X, Takama T, Yamaguchi Y, Hirai K, Yamamoto H, Doi S, Ozaki Y. Appl. Opt., 1998, 37(4): 759.
[85] Isola N R, Stokes D L,Vo-Dinh T. Anal. Chem., 1998, 70(7): 1352.
[86] Graham D, Mallinder B J, Whitcombe D, Watson N D, Smith W E. Anal. Chem., 2002, 74(5): 1069.
[87] Graham D, Mallinder B J, Whitcombe D, Smith W E. ChemPhysChem, 2001, 2(12): 746.
[88] Monaghan P B, McCarney K M, Ricketts A, Littleford R E, Docherty F, Smith W E, Graham D, Cooper J M. Anal. Chem., 2007, 79(7): 2844.
[89] Crew E, Yan H, Lin L, Yin J, Skeete Z, Kotlyar T, Tchah N, Lee J, Bellavia M, Goodshaw I, Joseph P, Luo J, Gal S, Zhong C J. Analyst, 2013, 138(17): 4941.

[1] Yan Huang, Guodong Liu, Xueji Zhang. Detection and Diagnosis of COVID-19 [J]. Progress in Chemistry, 2020, 32(9): 1241-1251.
[2] Hao Rui, Zhang Congyun, Lu Ya, Zhang Dongjie, Hao Yaowu, Liu Yaqing. Preparation and Surface-Enhanced Raman Scattering Effect of Graphene Oxide/(Au/Ag) Hybrid Materials [J]. Progress in Chemistry, 2016, 28(8): 1186-1195.
[3] Shao Feng, Chen Kun, Luo Zhihui, Wang Yanjun, Lu Donglian, Han Heyou* . Application of SERS Techniques in Diagnosis and Bioassay [J]. Progress in Chemistry, 2012, 24(12): 2391-2402.
[4] Zhu Debin*, Ma Wenge, Xing Xiaobo . Application of Electrochemiluminescence Assay in Nucleic Acid Detection [J]. Progress in Chemistry, 2012, 24(12): 2367-2373.
Viewed
Full text


Abstract

SERS-Based Nucleic Acid Detection